<u>FINAL</u> <u>AS-BUILT BASELINE</u> MONITORING REPORT (MY0)

MAJOR HILL STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection: September 2018 – January 2019 Submission: March 2019

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Ms. Lindsay Crocker NC DEQ – Division of Mitigation Services 1652 Mail Service Center Raleigh, North Carolina 27699-1652

Subject: Major Hill Stream and Wetland Mitigation Site: As-built Comment Responses DMS Contract #: 7193; DMS Project ID: 100015; RFP # 16-006990

Electronic Deliverables:

- All GIS files should be projected in NAD 83 State Plane coordinate system. For this project, some of the shapes are in GCS and some are in the required NAD_1983_StatePlane_North_Carolina_FIPS_3200_Feet. Make sure these are all in correct projections and resubmit. All shapefile projections were updated to the correct coordinate system.
- Need jurisdictional wetland area and planting area shapes added to submittal. Assets should match what is in the As-built report and be broken out by reach and wetland area. *These were added to the digital submittal and the assets match Table 1 in the as-built report.*
- Need CVS database file CVS database was included in the digital submittal.
- Wetland asset shapefile: there are significantly more enhancement shapes than there were on the JD, which does not make sense. Many of these shapes are very small. Can you explain what is going on with these small pieces? *The wetland assets were divided by the as-built stream channel, creating several small polygons on either side of the stream.* Is this shape the same one used for the Mitigation Plan? *Yes, this is the same shapefile from the Mitigation Plan, but it has been divided by the as-built stream channel.* The areas on the attribute table need to match the areas on the asset table. You can either break out the areas to add to the asset table, or you can merge the polygons by asset type to create a multi-part polygon that matches the attribute table. *The total areas match the areas on the asset table. The wetlands were merged to show one multi-part polygon for enhancement and one for restoration.*

Asset updates:

- The assets on the MYO report do not match what is in the Mitigation Plan. This is fine if it accurately reflects what is on the ground, but it is not explained in the report. Add a detailed description of how and why the assets changed in memorandum format for submission to the IRT with the AB report to change the credits. *Please see the attached letter to RS (from Axiom)* that provides a description for the asset updates. The letter has been included in the document as Appendix I.
- Page 2, assets: Add a column on Table 1 that includes 'Mitigation Plan footage/acreage." IRT will
 want to see this. Also, it appears that most of the changes occurred in the Enhancement II
 sections of the assets, which should have remained constant from MP-AB and these differences
 are significant. How and why did these changes occur? An additional column has been added to
 Table 1 and is titled Mitigation Plan Footage/Acreage. A description of the credit discrepancies

has been provided (see the attached letter) and the letter has been included as Appendix I to the document.

• Wetland Asset shapefiles: the enhancement assets don't match what is in the 404 permit as existing wetlands. Where are the enhancement assets from? Wetland enhancement assets were based on correspondence with David Bailey (USACE) after a mistake was discovered in the final PJD tear sheet (see attached email). The final existing wetlands were 0.52 acres, and with the as-built channel dissecting some of those, the final wetland enhancement acreage is 0.44 acres.

As-Built Report:

- Suggest reviewing the guidance for this contract on As-Built reports. *We have reviewed the guidance.*
- Add DWR number on cover page. *This was added.*
- It would make much more sense to move section 1.2 in front of section 1.3 and 1.4 for context. Section 1.2 was moved to the end and became Section 1.4. This section (1.3 and 1.4) should also contain information on actual as-built information. Currently, there is no discussion of as-built conditions, deviations from mitigation plan, fence

installation, construction timelines, planting dates, densities, or locations. Please update report to read like an As-Built. Provide description of pond removal, methodology, and any issues. *The following was added to the document. "Additional activities that occurred at the Site included the following.*

- Installation of a marsh treatment area to treat drainage prior to entering UT1.
- Fencing the entire conservation easement by leaving some pre-existing fencing, removing fencing, and installing additional fencing.
- Planting 8.11 acres of the Site with 8600 stems (planted species and densities by zone are included in Table 5 [Appendix C]).
- Removing a small, abandoned farm pond by 1) notching the dam to dewater; 2) removal of the dam to the elevation of the adjacent floodplain; 3) excavating sediment that was unsuitable for channel bank construction; 4) backfilling areas of sediment removed with soil suitable for channel construction (as necessary); 5) excavation of the design channel, 6) stabilization of the channel with coir matting, seed, and mulch; and 7) installation of structures.

Deviations from the construction plans included not constructing 2 log cross-vanes, constructing 15 structures at the bottom of riffles that were shown at the top of riffle on construction plans, and not constructing the Terracell drop structure; the restoration channel was tied into existing bedrock (Appendix G). No other deviations of significance occurred between construction plans and the as-built condition. In addition, no issues have arisen since construction occurred."

- Move Table 1 up before discussion of success criteria (this table should follow goals and objectives). Also, Table 1 is the same as the Table on Page 9, with one additional column. Merge these tables and just provide one time in the report. *Text was moved after Table 1. In addition, Section 2.4 was removed and the last column of the table was added to Table 1.*
- Section 2.1 remove everything after the table. There is no need to mention pre-construction data if it was already provided in the Mitigation Plan. All text after the Stream Monitoring Summary Table was removed and the following note was added to the table "Preconstruction data for water quality was included in the Detailed Mitigation Plan and for benthic macroinvertebrates is included in Appendix F."
- Section 2.1, this first paragraph is pasted from the Mitigation Plan on what RS is going to do. Because this is an As-Built, it should say what you did, not what you are planning to do. Update to reflect as-built. *This was adjusted.*

- Section 2.3, same comment as 2.1. Include planting area, densities and timeline. The following sentence was added to the beginning of this section "Planting occurred in December 2018-January 2019 within 8.11 acres of the Site and included 8600 stems (planted species and densities by zone are included in Table 5 [Appendix C])." And this sentence was added at the end "). Baseline measurement also included two random sample plots (10-meter by 10-meter). Measurements of all 10 plots resulted in an average of 716 planted stems/acre excluding live stakes (Tables 6-8, Appendix C)."
- Table 8, these numbers don't match Table 6. Table 8 should also include T-1 and T-2 in the averages. Table 8 originally pertained to riparian buffer totals which exclude shrubs. Since this information is included in App H, this Table was replaced with a summary of planted stems in the 8 fixed and 2 random plots.
- Table 2, the RFP issue date is 9/16/2016. Add 404 permit date to table (6/28/2018, see excel table guidance). *This was adjusted/added.*
- Figure 2, CCPV, Please increase text on legend so it is more legible. Show location of fences on CCPV. Font size in the legend was increased, and fences were added to the CCPV.
- Table 4, Appendices the stream lengths don't match asset pre-condition lengths. *These were adjusted to match Table 1.*
- Morphology Table. 10c shows that some of the cross sections don't match the design. For instance, Riffle 5 is much wider and has a larger cross-sectional area than proposed. Also, xs-10 is much wider and shallower than designed. These are the types of deviations that should be explained in the As-Built report, and designers need to explain why / how the size of the channel is so different than design which came from regional curve and reference analysis. This is true for x-sections 1, 2, 4, 5, and 10. Also, is there a reason you labeled the cross-sections backwards? *Site construction was completed on September 19th. The Site experienced multiple bankfull events from Hurricane Florence from 9/15 to 9/18. Cross sections were performed just after Florence on 9/19-9/20. While the Site made it through this storm with multiple bankfulls, with minimal damage, there were likely some changes in the post construction cross sectional areas. In addition, the use of sod mats and natural riffle bed material may cause channel dimension variations that are compounded with the small size of the constructed channel. Based on field reviews of the Site, these variations appear to be within an acceptable tolerance for channel stability.*

As-Built Drawings:

- Sheet 5A and 5B appear to be conservation easement plat. This is not required for As-Built, please remove. *The conservation plat has been removed from the plans.*
- Sheet 5A (3 of 20), this should show the different planting areas on the map as differentiated in the Mitigation Plan (ex: Pied/Low Mountain Alluvial Forest type should be one area on the map) along with the planting species table. Also, it appears that RS planted the entire easement, but over half of the easement has existing trees. Update with actual ground-truthed planted area, by planting area type. (Something like Table 2 from page 264 of the Mitigation Plan should be included in the As-Built, along with map). *A planting plan, with different planting areas differentiated on the map has been provided.*
- Sheet 5A (4-7 or 20) are not necessary. Information from these pages has been transferred into the Construction Drawings, as discussed in the field. These pages have been removed from the document.
- Your drawings should show the drawings from the Mitigation Plan and red lines where anything deviated from those construction drawings. It should contain at minimum topography, location of structures, stationing. Refer to guidance on As-built drawings. As built profiles should show design elevation lines, with As-Built as a red line (where elevation deviates). *Construction*

Drawings have been updated as discussed in field review and meetings. Red-line alterations have been added to the documents with appropriate notes.

- Sheet 8-10 of 20 (profiles). These elevations should be overlain on the design sheets (6A-6G). As discussed in the field, profiles are not being added as overlays on this project's as-built. For the purpose of this as built construction plan, the structure elevations (pre and post) have been added as a table to ensure the design channel elevations have been met. Profiles will be provided independently as baseline data for future overlays, as required by the DMS/IRT.
- Profiles: there shouldn't be survey measurements on profile drawings, the graphs as a standalone are fine, that other information should go in your geomorphology excel files. The as-built profiles should overlay the design profile. *Please see the note above*.
- Stationing: why does UT-1 only go out to ~1,675 and UT-2 only go to 28'? Shouldn't you be showing the distances as stationing as in the design? As discussed in the field, stationing on the profile and stationing of the alignment are independent. The alignment is based on the centerline along the plan view, while the profile is based on field measurements and will inherently be different. The profile is not expected to match the alignment which is used for crediting purposes.
- There were some structures that were not constructed, but there is no explanation as to why or how the grade was maintained. Please provide text explanation. A note has been added to the construction drawings to indicate that the structures were removed due to contact with bedrock.

Riparian Buffer As-Built supplement:

- Add DWR number *This was added*.
- Read through summary and update for As-Built. There are sections that say 'will be' or have strange verb tenses like 'was not be.' *This was adjusted*.
- Table 5 does not match Table 6 for your vegetation counts. Table 5 summarizes riparian buffer success criteria, which only includes planted hardwood trees and excludes shrubs, pines, vines, or unknown species in CVS. Table 6 includes all planted stems. Both tables are exported from CVS.
- As-Built report maps. All riparian buffer measurement should be measured in square foot (to the whole square foot) and reported in square foot on the maps. Update Asset maps and As-Built maps with the numbers in square feet and ensure they match the asset table. *All reporting of riparian buffer assets was updated to square feet*.
- Provide a planting map and show by planting zone and acreage (same as wetland and stream report). A planting map (Figure B) was created with planting zones and acreages.
- Asset Table: Each Reach ID should be a separate unit (instead of being all labeled as 'Major Hill'). The areas should match the shapefiles and shapefile should identify each reach ID in the attribute table. *Each reach was given a separate ID in the table and shapefile attribute table.*
- Credits changed from Mitigation Plan to As-Built. Please provide explanation for this change in the document. *The final surveyed easement was slightly different resulting in a few changes to assets.*

FINAL AS-BUILT BASELINE MONITORING REPORT (MY0)

MAJOR HILL STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection: September 2018 – January 2019 Submission: March 2019

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Prepared by:

And

Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604 Contact: Worth Creech 919-755-9490 (phone) 919-755-9492 (fax) Axiom Environmental, Inc.

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603 Contact: Grant Lewis 919-215-1693 (phone)

TABLE OF CONTENTS

1.0 PROJECT SUMMARY	2
1.1 Project Goals & Objectives	2
1.2 Project Background	4
1.3 PROJECT COMPONENTS AND STRUCTURE	4
1.4 Success Criteria	5
1.4.1 Stream Success Criteria	5
1.4.2 Wetland Success Criteria	5
1.4.3 Vegetation Success Criteria	б
2.0 METHODS	6
2.1 Stream Monitoring	6
2.2 WETLAND MONITORING	7
2.3 VEGETATION	7
3.0 REFERENCES	9

APPENDICES

Appendix A. Background Tables
Table 1. Project Components and Mitigation Units
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Attributes Table9
Appendix B. Visual Assessment Data
Figure 1. Project Location
Figure 2. Current Conditions Plan View
Vegetation Plot Photographs
Appendix C. Vegetation Data
Table 5. Planted Bare Root Woody Vegetation
Table 6. Vegetation Plot Summary Information
Table 7. Total Stems by Plot and Species
Table 8. Riparian Buffer Vegetation Totals
Appendix D. Stream Geomorphology Data
Tables 9A-9B. Baseline Stream Data Summary
Tables 10A-10D. Monitoring Data (Dimensional Morphology Summary & Stream
Reach Data Summary)
Appendix E. Groundwater Gauge Soil Profiles
Appendix F. Preconstruction Benthic Data
Preconstruction Benthic Results
Habitat Assessment Dataforms
Appendix G. As-built Plan Sheets
Appendix H. Riparian Buffer Asbuilt Baseline Report
Appendix I. Credit Discrepancy Letter

1.0 PROJECT SUMMARY

Restoration Systems, LLC has established the North Carolina Division of Mitigation Services (NCDMS) Major Hill Stream and Wetland Restoration Site (Site).

1.1 Project Goals & Objectives

Project goals are based on the *Cape Fear River Basin Restoration Priorities* (RBRP) report (NCEEP 2009) and on-site data collection of channel morphology and function observed during field investigations. The Site is located within Targeted Local Watershed (TLW) 03030002050050. The RBRP report documents benthic ratings vary between "Fair" and "Good-Fair" possibly due to cattle, dairy, and poultry operations. The project is not located in a Regional or Local Watershed Planning Area; however, RBRP goals are addressed by project activities as follows with Site specific information following the RBRP goals in parenthesis.

- 1. Reduce and control sediment inputs (reduction of 10.0 tons/year after mitigation is complete);
- 2. Reduce and manage nutrient inputs (livestock removal from streams, elimination of fertilizer application, and marsh treatment areas may result in a direct reduction of 852.4 pounds of nitrogen and 70.6 pounds of phosphorus per year);
- 3. Protect and augment designated natural heritage areas.

Site specific mitigation goals and objectives were developed through the use of North Carolina Stream Assessment Method (NC SAM) and North Carolina Wetland Assessment Method (NC WAM) analyses of existing and reference stream systems at the Site (NC SFAT 2015 and NC WFAT 2010) (see Table 1).

Table 1. Stream/Wetland Targe	eted Functions, Goals, and Objectives		
Targeted Functions	Goals	Objectives	Compatibility of Success Criteria
(1) HYDROLOGY			
(2) Flood Flow (Floodplain Access) (3) Streamside Area Attenuation	• Attenuate flood flow across the Site.	• Construct new channel at historic floodplain elevation to restore overbank flows and restore jurisdictional wetlands	 BHR not to exceed 1.2 Document four overbank events in separate monitoring years
(4) Wooded Piperian Buffer	• Minimize downstream flooding to the	• Plant woody riparian buffer	Livestock excluded from the easement
(4) wooded Riparian Burler	maximum extent possible.	Remove livestock	Attain Wetland Hydrology Success Criteria
(4) Microtopography	Connect streams to functioning wetland systems.	 Deep rip floodplain soils to reduce compaction and increase soil surface roughness Protect riparian buffers with a perpetual conservation easement 	 Attain Vegetation Success Criteria Conservation Easement recorded
(3) Stream Stability	_		Cross-section measurements indicate a stable channel with cobble/gravel substrate
(4) Channel Stability		• Construct channels with proper pattern, dimension, and longitudinal profile	 Visual documentation of stable channels and structures
(4) Sediment Transport	Increase stream stability within the Site so that channels are neither aggrading no degrading.	 Remove livestock Construct stable channels with cobble/gravel substrate Plant woody riparian buffer 	 BHR not to exceed 1.2 ER of 1.4 or greater < 10% change in BHR and ER in any given year Livestock excluded from the easement Attain Vegetation Success Criteria
(1) WATER QUALITY			
(2) Streamside Area Vegetation		Remove livestock and reduce agricultural land/inputs	
(3) Upland Pollutant Filtration	• Remove direct nutrient and pollutant	 Install marsh treatment areas 	• Livestock excluded from the easement
(3) Thermoregulation	inputs from the Site and reduce	• Plant woody riparian buffer	Attain Wetland Hydrology Success Criteria
(2) Indicators of Stressors	- contributions to downstream waters.	Restore/enhance jurisdictional wetlands adjacent to Site streams	Attain Vegetation Success Criteria
(1) HABITAT			
(2) In-stream Habitat			
(3) Substrate	_		
(3) Stream Stability	_	• Construct stable channels with cobble/gravel substrate	
(3) In-Stream Habitat	_	• Plant woody riparian buffer to provide organic matter and shade	 Cross-section measurement indicate a stable channel with cobble/gravel substrate Visual documentation of stable channels and in-stream structures.
(2) Stream-side Habitat	• Improve instream and stream-side	Construct new channel at historic floodplain elevation to restore overbank flows and plant woody riperion buffer	Attain Wetland Hydrology Success Criteria
(3) Stream-side Habitat		 Protect riparian buffers with a perpetual conservation easement 	Attain Vegetation Success CriteriaConservation Easement recorded
(3) Thermoregulation		• Restore/enhance jurisdictional wetlands adjacent to Site streams	
Wetland Landscape Patch Structure	_		
Wetland Vegetation Composition			

1.2 Project Background

The Major Hill Stream and Wetland Mitigation Site (hereafter referred to as the "Site") encompasses 16.7 acres along warm water, unnamed tributaries to Pine Hill Branch. The Site is located approximately 3.5 miles southeast of Snow Camp and 6 miles north of Silk Hope in southern Alamance County near the Chatham County line (Figure 1, Appendix A).

Prior to construction, Site land use consisted of disturbed forest and agricultural land used for livestock grazing and hay production. Livestock had unrestricted access to Site streams, which had been relocated to the floodplain edge, ditched, impounded, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from stream banks and adjacent pastures. Approximately 60 percent of the stream channel had been degraded contributing to sediment export from the Site resulting from mechanical processes such as livestock hoof shear. In addition, streamside wetlands were cleared and drained by channel downcutting and land uses. Preconstruction Site conditions resulted in degraded water quality, a loss of aquatic habitat, reduced nutrient and sediment retention, and unstable channel characteristics (loss of horizontal flow vectors that maintain pools and an increase in erosive forces to channel bed and banks). Site restoration activities restored riffle-pool morphology aiding in energy dissipation, increased aquatic habitat, stabilized channel banks, and will greatly reduce sediment loss from channel banks.

1.3 Project Components and Structure

Site restoration activities generated 3058 Stream Mitigation Units (SMUs) and 0.76 Wetland Mitigation Units (WMUs) as the result of the following.

- 1738 linear feet of Priority I stream restoration
- 3299 linear feet of stream enhancement (Level II)
- 0.54 acre of riparian wetland restoration
- 0.44 acre of riparian wetland enhancement

Additional activities that occurred at the Site included the following.

- Installation of a marsh treatment area to treat drainage prior to entering UT1.
- Fencing the entire conservation easement by leaving some pre-existing fencing, removing fencing, and installing additional fencing.
- Planting 8.11 acres of the Site with 8600 stems (planted species and densities by zone are included in Table 5 [Appendix C]).
- Removing a small, abandoned farm pond by 1) notching the dam to dewater; 2) removal of the dam to the elevation of the adjacent floodplain; 3) excavating sediment that was unsuitable for channel bank construction; 4) backfilling areas of sediment removed with soil suitable for channel construction (as necessary); 5) excavation of the design channel, 6) stabilization of the channel with coir matting, seed, and mulch; and 7) installation of structures.

Deviations from the construction plans included not constructing 2 log cross-vanes, constructing 15 structures at the bottom of riffles that were shown at the top of riffle on construction plans, and

not constructing the Terracell drop structure; the restoration channel was tied into existing bedrock (Appendix G). No other deviations of significance occurred between construction plans and the as-built condition. In addition, no issues have arisen since construction occurred.

Site design was completed in February 2018. Construction started on July 25, 2018 and ended within a final walkthrough on September 6, 2018. The Site was planted in December 2018-January 2019. Completed project activities, reporting history, completion dates, project contacts, and background information are summarized in Tables 1-4 (Appendix A).

1.4 Success Criteria

Project success criteria have been established per the October 24, 2016 NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*.

1.4.1 Stream Success Criteria

From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes stream success criteria.

- All streams must maintain an Ordinary High-Water Mark (OHWM), per RGL 05-05.
- Continuous surface flow must be documented each year for at least 30 consecutive days.
- Bank height ratio (BHR) cannot exceed 1.2 at any measured cross-section.
- Entrenchment ratio (ER) must be no less than 1.4 at any measured riffle cross-section.
- BHR and ER at any measure riffle cross-section should not change by more than 10% from baseline condition during any given monitoring period.
- The stream project shall remain stable and all other performance standards shall be met through four separate bankfull events, occurring in separate years, during the monitoring years 1-7.

1.4.2 Wetland Success Criteria

The following summarizes wetland success criteria.

• Saturation or inundation within the upper 12 inches of the soil surface for, at a minimum, 10 percent of the growing season, during average climatic conditions

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for purposes of this project gauge hydrologic success will be determined using data from March 1 - October 22 to more accurately represent the period of biological activity. Based on growing season information outlined in the *Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region* (USACE 2010), this will be confirmed annually by soil temperatures exceeding 41 degrees Fahrenheit at 12 inches depth and/or bud burst.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (March 1-October 22), during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may be used for comparison to the Site; however, reference gauge data will not be tied to success criteria. These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed. The jurisdictional determination will not supersede monitoring data, or overturn a failure in meeting success criteria; however, this information may be used by the IRT, at the discretion of the IRT, to make a final determination on Site wetland re-establishment success.

1.4.3 Vegetation Success Criteria

The following summarizes vegetation success criteria.

- Within planted portions of the site, a minimum of 320 stems per acre must be present at year 3; and a minimum of 210 stems per acre must be present at year 7.
- Trees must average 7 feet in height at year 5, and 10 feet in height at year 7.
- Planted and volunteer stems are counted, provided they are included in the approved planting list for the site; natural recruits not on the planting list may be considered by the IRT on a case-by-case basis.
- Any single species can only account for 50% of the required stems within any vegetation plot.

2.0 METHODS

Monitoring requirements and success criteria outlined in this plan follow the October 24, 2016 NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected. The monitoring schedule is summarized in the following table.

Resource	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Streams							
Wetlands							
Vegetation							
Macroinvertebrates							
Water Quality							
Visual Assessment							
Report Submittal							

Monitoring Schedule

2.1 Stream Monitoring

Annual monitoring will include development of channel cross-sections and substrate on riffles and pools (Figure 2, Appendix B). Data presented in graphic and tabular format include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, and 5) width-to-depth ratio. Longitudinal profiles were monitored for as-built; however, profiles will not be measured routinely unless monitoring demonstrates channel bank or bed instability, in which case, longitudinal

profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Parameter	Method	Schedule/Frequency	Number/Extent
Stream Profile	Full longitudinal survey	As-built (unless otherwise required)	All restored stream channels
Stream Dimension	Cross-sections	Years 1, 2, 3, 5, and 7	10 cross-sections
	Visual Assessments	Yearly	All restored stream channels
Channel Stability	Bank Pins	Yearly	Only if instability is documented during monitoring
	Additional Cross-sections	Yearly	Only if instability is documented during monitoring
Stream Hydrology	Continuous monitoring water level gauges and/or trail camera	Continuous recording through monitoring period	Two gauges on UT1 (upstream and downstream) and one trail camera on UT1 (downstream)
Water Quality*	Water samples	Yearly	Two locations
Macroinvertebrates*	Qual 4 sampling	Years 3, 5, and 7	Two locations

Stream Monitoring Summary

*Preconstruction data for water quality was included in the Detailed Mitigation Plan and for benthic macroinvertabrates is included in Appendix F.

2.2 Wetland Monitoring

Six groundwater monitoring gauges were installed within the drained pond area and the remaining wetland restoration areas to take measurements after hydrological modifications were performed at the Site (Figure 2, Appendix B). A detailed soil profile was described adjacent to each installed groundwater gauge (Appendix E). Hydrological sampling will continue throughout the entire year at intervals necessary to satisfy jurisdictional hydrology success criteria. In addition, an on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions and a trail camera was installed to confirm overbank flooding events. Growing season soil temperatures will also be documented using a continuously logging soil temperature probe, this data will be provided with wetland hydrology data.

Wetland Monitoring Summary

Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected
			6 gauges spread	Soil temperature at the
Wetland	Groundwater	As-built, Years 1, 2,	throughout	beginning of each monitoring
Restoration	gauges	3, 4, 5, 6, and 7	restored	period, groundwater and rain
			wetlands	data for each monitoring period

2.3 Vegetation

Planting occurred in December 2018-January 2019 within 8.11 acres of the Site and included 8600 stems (planted species and densities by zone are included in Table 5 [Appendix C]). After planting was completed, an initial evaluation was performed to verify planting methods and to determine initial species composition and density.

During quantitative vegetation sampling, 8 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation*, *Version 4.2* (Lee et al. 2008). Baseline measurement also included two random sample plots (10-meter by 10-meter). Measurements of all 10 plots resulted in an average of 716 planted stems/acre excluding livestakes (Tables 6-8, Appendix C).

· Genuion monitoring building j						
Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected		
Vegetation	Permanent vegetation plots 0.0247 acre (100 square meters) in size	As-built, Years 1, 2, 3, 5, and 7	8 plots spread across the Site	Species, height, location, planted vs. volunteer, and age		
vigor	Annual random vegetation plots, 0.0247 acre (100 square meters) in size	As-built, Years 1, 2, 3, 5, and 7	2 plots randomly selected each year	Species and height		

Vegetation Monitoring Summary

3.0 REFERENCES

- Griffith, G.E., J.M. Omernik, J.A. Comstock, M.P. Schafale, W.H. McNab, D.R. Lenat, T.F. MacPherson, J.B. Glover, and V.B. Shelbourne. 2002. Ecoregions of North Carolina and South Carolina. U.S. Geological Survey, Reston, Virginia.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS). 2014. Stream and Wetland Mitigation Monitoring Guidelines. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2005. Cape Fear River Basinwide Water Quality Plan. Available: https:// https://deq.nc.gov/about/divisions/waterresources/planning/basin-planning/water-resource-plans/cape-fear-2005 [December 8, 2016]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.
- North Carolina Division of Water Resources (NCDWR). 2016. Standard Operating Procedures for Collection and Analysis of Benthic Macroinvertebrates (Version 5.0). (online). Available: <u>https://files.nc.gov/ncdeq/Water%20Quality/Environmental%20Sciences/BAU/NCDWR</u> <u>Macroinvertebrate-SOP-February%202016_final.pdf</u>
- North Carolina Division of Water Quality (NCDWQ). 2009. Small Streams Biocriteria Development. Available: <u>http://portal.ncdenr.org/c/document_library/get_file?uuid=2d54ad23-0345-4d6e-82fd-04005f48eaa7&groupId=38364</u>
- NorthCarolina Ecosystem EnhancementProgram (NCEEP).2009.Cape Fear River BasinRestorationPriorities2009(online).Available:http://portal.ncdenr.org/c/document_library/get_file?uuid=864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329
- North Carolina Stream Functional Assessment Team. (NC SFAT 2015). N.C. Stream Assessment Method (NC SAM) User Manual. Version 2.1.
- North Carolina Wetland Functional Assessment Team. (NC WFAT 2010). N.C. Wetland Assessment Method (NC WAM) User Manual. Version 4.1.

- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- Simon A, Hupp CR. 1986. Geomorphic and Vegetative Recovery Processes Along Modified Tennessee Streams: An Interdisciplinary Approach to Disturbed Fluvial Systems. Forest Hydrology and Watershed Management. IAHS-AISH Publ.167.
- United States Department of Agriculture (USDA). 2016. Web Soil Survey (online). Available: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx [August 2016].
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.

Appendix A Background Tables

Table 1. Project Components and Mitigation UnitsTable 2. Project Activity and Reporting HistoryTable 3. Project Contacts TableTable 4. Project Attributes Table

Reach ID	Stream Stationing/ Wetland Type	Existing Footage/ Acreage	Mitigation Plan Footage/ Acreage	Constructed Footage/ Acreage	Restoration Level	Restoration or Restoration Equivalent	Mitigation Ratio	Mitigation Credits	Comment
UT 1	00+00 to 16+99	1829	1699	1699	Restoration	1699	1:1	1699	
UT 1	16+99 to 27+96	1097	1060	1097*	EII	1097	2.5:1	439	
UT 2	00+00 to 01+68	168	168	168	EII	168	2.5:1	67	
UT 2	01+68 to 02+07	39	43	39*	Restoration	39	1:1	39	
UT 3	00+00 to 22+98	2298	2197	2298*	ЕП	2298-80-144- 40= 2034	2.5:1	814	80 If and 40 If of UT3 are not credit generating due to crossings and drainage easement. 144 If are not credit generating due to lack of control of south bank and drainage easement.
Wetlands	Riparian Riverine		0.54	0.54	Restoration	0.54	1:1	0.54	Wetland Restoration
Wetlands	Riparian Riverine	0.52	0.44	0.44	Enhancement	0.44	2:1	0.22	Wetland Enhancement

Table 1. Project Components and Mitigation CreditsMajor Hill Restoration Site

*See attached letter (Appendix I) for explanation of credit discrepancies.

Table 1 continued. Project Components and Mitigation CreditsMajor Hill Restoration Site

Length & Area Summations by Mitigation Category				
Restoration Level	Stream (linear footage)	Riparian Wetland (acreage)		
Restoration	1738	0.54		
Enhancement (Level II)	3299*			
Enhancement		0.44**		

* An additional 264 linear feet of stream enhancement (level II) is proposed outside of the easement (at road crossings), or the sponsor controls only one bank of the stream, and is therefore not included in this total or in mitigation credit calculations.

**Approximately 0.08 acre of existing, degraded wetland will not be enhanced as the result of the design channel crossing the wetland area.

Overall Assets Summary				
Asset Category	Overall Credits			
Stream	3058			
Riparian Riverine Wetland	0.76			

Table 2. Project Activity and Reporting HistoryMajor Hill Restoration Site

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Technical Proposal Issue Date (RFP No. 16-006990)	September 16, 2016	September 16, 2016
Institution Date (NCDMS Contract No. 7193)		May 22, 2017
Mitigation Plan		February 2018
404 Permit Date		June 28, 2018
Construction Plans		July 2018
Site Construction		July 25-September 6, 2018
Planting		December 2018-January 2019

Table 3. Project Contacts TableMajor Hill Restoration Site

Full Delivery Provider	Restoration Systems
	1101 Haynes Street, Suite 211
	Raleigh, North Carolina 27604
	Worth Creech
	919-755-9490
Designer & Baseline Data Collection	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis
	919-215-1693

Table 4. Project Attribute TableMajor Hill Restoration Site

Pro	ject Information
Project Name	Major Hill Restoration Site
Project County	Alamance County, North Carolina
Project Area (acres)	16.7
Project Coordinates (latitude & latitude)	35.873206, -79.360906
Planted Area (acres)	8.11
Project Water	shed Summary Information
Physiographic Province	Piedmont
Project River Basin	Cape Fear
USGS HUC for Project (14-digit)	03030002050050
NCDWR Sub-basin for Project	03-06-04
Project Drainage Area (acres)	17 to 445
Percentage of Project Drainage Area that is	-20/
Impervious	<2%
CGIA Land Use Classification	Managed Herbaceous Cover & Mixed Upland Hardwoods

Asbuilt Baseline Monitoring Report (Project No. 100015) Major Hill Stream and Wetland Restoration Site Alamance County, North Carolina Appendices Restoration Systems, LLC March 2019

Table 4. Project Attribute TableMajor Hill Restoration Site (continued)

Reac	h Sur	nmary Information		
Parameters		UT 1	UT 2	UT 3
Length of reach (linear feet)		2926	207	2298
Valley Classification & Confinement		Alluvial, mo	derately confined to	confined
Drainage Area (acres)		71.7	17.2	444.7
NCDWR Stream ID Score		20.25 - 33.5		
Perennial, Intermittent, Ephemeral		Intermittent/Perennial	Intermittent	Perennial
NCDWR Water Quality Classification			WS-V, NSW	
Existing Morphological Description (Rosgen 1996)		Cg5	C4/5	C3
Proposed Stream Classification (Rosgen 1996)		C/E 4	C4/5	C3
Existing Evolutionary Stage (Simon and Hupp 1986	j)	III/IV	III	Ι
Underlying Mapped Soils		Efland silt loam, Geo Orange silt loam, Wor	orgeville silt loam, H sham sandy loam, L	Ierndon silt loam, ocal Alluvial Land
Drainage Class		Well-drained, well-drai drained, p	ned, well-drained, p oorly drained, respe	oorly drained, well-
Hydric Soil Status		Nonhydric, nonhydric	, nonhydric, nonhyd respectively	ric, hydric, hydric,
Slope		0.0241	0.0256	0.0130
FEMA Classification			NA	
Native Vegetation Community		Piedmont Alluvial F	orest/Dry-Mesic Oa	k-Hickory Forest
Watershed Land Use/Land Cover (Site)		45% forest, 35% resider	agricultural land, 20 ntial/impervious surf	% low density
Watershed Land Use/Land Cover (Cedarock Referen	nce	65% forest, 30%	agricultural land, <5	% low density
Channel)		resider	ntial/impervious surf	ace
Percent Composition of Exotic Invasive Vegetation			<5%	
Wetla	nd Su	mmary Information		
Parameters			Wetlands	
Wetland acreage		0.54 acre drained or in	mpounded & 0.44 ad	cre degraded
Wetland Type		Rip	arian riverine	
Mapped Soil Series		Worsham an	d Local Alluvial La	nd
Drainage Class		Po	oorly drained	
Hydric Soil Status			Hydric	
Source of Hydrology		Groundwa	ter, stream overbanl	<u> </u>
Hydrologic Impairment		Incised streams,	compacted soils, liv	restock
Native Vegetation Community		Piedmont/Low	Mountain Alluvial I	Forest
% Composition of Exotic Invasive Vegetation			<5%	
Restoration Method		Hydro	logic, vegetative	
Enhancement Method			Vegetative	

Appendix B Visual Assessment Data

Figure 1. Project Location Figure 2. Current Conditions Plan View Vegetation Plot Photographs

Appendices Restoration Systems, LLC March 2019

Major Hill Asbuilt Vegetation Plots Photos Taken January 8, 2019

Asbuilt Baseline Monitoring Report (Project No. 100015) Major Hill Stream and Wetland Restoration Site Alamance County, North Carolina

Appendices Restoration Systems, LLC March 2019

Appendix C Vegetation Data

Table 5. Planted Bare Root Woody VegetationTable 6. Total Stems by Plot and SpeciesTable 7. Temporary Vegetation Plot DataTable 8. Riparian Buffer Vegetation Totals

Species	Piedmont/Low Mountain Alluvial Forest	Dry-Mesic Oak/Hickory Forest	Marsh Treatment Wetland	Streamside Assemblage	Total
Acres	1.1	5.5	0.01	1.5	8.11
Alnus serrulata			5	20	25
Asimina triloba				200	200
Betula nigra	100			200	300
Carpinus caroliniana		600			600
Cephalanthus occidentalis			5	20	25
Cercis canadensis		500			500
Cornus amomum	95		5	800	900
Diospyros virginiana		450			450
Fraxinus americana		100			100
Fraxinus pennsylvanica	150			750	900
Liriodendron tulipifera	75				75
Nyssa sylvatia		600			600
Platanus occidentalis	120			780	900
Quercus nigra	110	790		500	1,400
Quercus phellos	100	700		400	1,200
Salix nigra*				400*	400
Sambucus canadensis			11	14	25
TOTALS	750	3,740	26	4,084	8,600
Stems/Acre	682	680	2600	2722	1060

Table 5. Planted Bare Root Woody VegetationMajor Hill Restoration Site

*Live stakes of Salix nigra were planted; all other planted species were planted as bare root plants.

Table 6. Total Stems by Plot and Species EEP Project Code 17.009. Project Name: Major Hill

													Curre	nt Plot I	Data (N	YO 201	9)										Ann	ual Me	ans
			17.0	009-01	-0001	17.0	009-01	-0002	17.	009-01	-0003	17	.009-01	-0004	17	.009-01	-0005	17	.009-0 2	L-0006	17.	009-01 [.]	-0007	17.	009-01-	-0008	M	YO (201	.9)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoL	S P-all	Т	PnoL	S P-all	Т	PnoL	S P-all	Т	PnoLS	6 P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Asimina triloba	pawpaw	Tree				1		1 1	. 3	3 3	3 3	3	1	1	1						1	1 :	1 1	. 1	. 1	1 1	. 7	7	7
Betula nigra	river birch	Tree											2	2 2	2	4 4	1 4		1	1 1	. 1	1 1	1 1	. 1	. 1	1 1	9	9	9
Carpinus caroliniana	American hornbeam	Tree	1		1 1				2	2 2	2 2	2							2	2 2							5	5	5
Cercis canadensis	eastern redbud	Tree				1	·	L 1	. 3	3 3	3 3	3	4	4 4	4	1 :	1 1		1	1 1	. 1	1 :	1 1	. 3	3	3 3	14	14	14
Cornus amomum	silky dogwood	Shrub				1	<u>-</u>	L 1	-																		1	1	1
Diospyros virginiana	common persimmon	Tree											2	2 2	2				1	1 1				2	2	2 2	5	5	5
Fraxinus	ash	Tree																						1	. 1	1 1	1	1	1
Fraxinus americana	white ash	Tree																	3	3 3				2	2	2 2	5	5	5
Fraxinus pennsylvanica	green ash	Tree											2	2	2	1 :	1 1										3	3	3
Liriodendron tulipifera	tuliptree	Tree	4	. 4	4 4	1		1 1	-																		5	5	5
Nyssa sylvatica	blackgum	Tree	2	2	2 2	2	Ĩ	2 2	2 2	2 2	2 2	2	1	1	1	1 :	1 1							2	2	2 2	10	10	10
Platanus occidentalis	American sycamore	Tree				2	2	2 2	2							1 :	1 1		3	3 3	1	1 :	1 1	-			7	7	7
Quercus	oak	Tree	3	3	3 3	1		1 1	. 1		L	1	3	3	3	4 4	1 4		3	3 3	ζ.	4 4	4 4	. 4	. 4	4 4	23	23	23
Quercus nigra	water oak	Tree				1		1 1	. 1		L	1	4	4 4	4	2 2	2 2		1	1 1	. 1	1 1	1 1				10	10	10
Quercus phellos	willow oak	Tree				3	3	3 3	3 2	2 2	2 2	2	2	2	2	2 2	2 2		1	1 1	. 5	5 5	5 5	3	3	3 3	18	18	18
Unknown		Shrub or Tree	1	-	1 1				1		L í	1									2	2 2	2 2	2	2 2	2 2	6	6	6
		Stem count	11	11	1 11	13	13	3 13	8 15	5 15	5 15	5 2	21 2	1 2	1 1	6 16	5 16	5 1	.6 1	.6 16	5 16	5 16	5 16	21	. 21	1 21	129	129	129
		size (ares)		1			1			1			1			1			1			1			1			8	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02)		0.02			0.02			0.20	
		5	l L	5 5	9	9	9 9	8	8 8	8 8	8	9	9 9	9	8 8	8 8		9	9 9	8	8 8	8 8	10	10	0 10	16	16	16	
		Stems per ACRE	445.2	445.2	2 445.2	526.1	526.2	L 526.1	607	607	7 607	7 849	. <mark>8</mark> 849.	8 849.	647.	5 647.5	647.5	647	.5 647	5 647.5	647.5	5 647.5	647.5	849.8	849.8	849.8	652.6	652.6	652.6

Color for Density

PnoLS = Planted excluding livestakes

Exceeds requirements by 10% Exceeds requirements, but by less than 10% P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

T includes natural recruits

Table 7. Temporary Vegetation Plot DataMajor Hill Restoration Site

	50m x 2m Tempora	ry Plot (Bearing)
Species	T-1 (179 ⁰)	T-2 (347 ⁰)
Asimina triloba		1
Betula nigra	2	3
Carpinus caroliniana		3
Cercis canadensis	7	
Diospyros virginiana	1	1
Fraxinus pennsylvanica	2	
Nyssa sylvatia	3	2
Platanus occidentalis		1
Quercus nigra	11	7
Quercus phellos	1	3
Total Stems	27	21
Total Stems/Acre	1093	850

Table 8. Planted Vegetation TotalsMajor Hill Restoration Site

Plot #	Planted Stems/Acre	Success Criteria Met?
1	445	Yes
2	526	Yes
3	607	Yes
4	850	Yes
5	648	Yes
6	648	Yes
7	648	Yes
8	850	Yes
T-1	1093	Yes
T-2	850	Yes
Average Planted Stems/Acre	716	Yes

Appendix D Stream Geomorphology Data

Tables 9A-9B. Baseline Stream Data Summary Tables 10A-10D. Monitoring Data (Dimensional Morphology Summary & Stream Reach Data Summary)

Table 9a.	Baseline Stream Data Summary (UT 1 Upstream)
Major Hill	Mitigation Project - NCDMS Project Number 100015

Parameter	Gauge		Regional C	urve	Pre	Existing Ul	g Condit ostream)	tion (UT)	51		Referenc	e Reach(e	s) Data		De U	esign (UT Jpstream	[1	Μ	lonitoring	g Baselir	ne (UT 1	Upstrea:	m)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					3.8		5.6	6.4		8.0		9.6	12.1		5.6	6.4	6.0	6.0		10.9	11.8		3
Floodprone Width (ft)					11.0		27.0	48.0		15		75	140		20	60	40	23		40	40		3
BF Mean Depth (ft)					0.3		0.5	0.7		0.8		1.1	1.4		0.4	0.5	0.4	0.3		0.5	0.6		3
BF Max Depth (ft)					0.7		0.9	1.3		1.1		1.7	2.0		0.5	0.7	0.6	0.7		0.8	1.1		3
BF Cross Sectional Area (ft ²)					2.6		2.6	2.6		8.0		11.4	14.7		2.6	2.6	2.6	3.0		3.5	7.1		3
Width/Depth Ratio					5.4		13.4	27.0		8.0		9.6	15.1		12.0	16.0	14.0	12.0		19.6	33.9		3
Entrenchment Ratio					1.4		5.8	12.6		1.9		7.1	13.0		3.6	9.3	6.6	3.4		3.7	3.8		3
Bank Height Ratio					1.0		1.4	1.7		1.0		1.2	1.8		1.0	1.3	1.2	1.0		1.0	1.3	·	3
Profile					=					2			-	•	=	•							h
Riffle length (ft)																		5		16	47	·······	3
Riffle slope (ft/ft)										0.0100		0.0207	0.0576		0.0268	0.0401	0.0357	0.0000		0.0252	0.0539		3
Pool length (ft)																		4.0		13.0	28.0		3
Pool Max depth (ft)										1.5		2.3	2.7		0.6	0.9	0.8	1.3		2.0	2.5		3
Pool spacing (ft)		1								22.0		40.8	81.0		18.0	48.0	24.0	18.0		24.0	48.0		3
Pattern													-			-			-	-			
Channel Beltwidth (ft)										17		26.3	38		18	36	24	18		24	36		
Radius of Curvature (ft)										9		23.6	113		12	60	18	12		18	60		
Rc:Bankfull width (ft/ft)										0.8		2.4	10.3		2	10	3	2		3	10		
Meander Wavelength (ft)										10		65.7	116		36	72	51	36		51	72		
Meander Width ratio										1.5		2.7	4.7		3	6	4	3		4	6		
Transport parameters			1	1			1				-	1	1						-	1			
Reach Shear Stress (competency) lbs/ft ²																							
Max part size (mm) mobilized at bankfull																							
Stream Power (transport capacity) W/m ²																						1	
Additional Reach Parameters												•											
Rosgen Classification							Cg 5					Eb 5				E/C 4				E/C-	-type		
Bankfull Velocity (fps)		1																					
Bankfull Discharge (cfs)		1					9.5				2	8.8 - 60.6				9.5				9	.5		
Valley Length (ft)		1																					
Channel Thalweg Length (ft)																							
Sinuosity							1.07				1	.2 - 1.46				1.08				1.	08		
Water Surface Slope (ft/ft)							0.0225				0.00	053 - 0.025	58			0.0223				0.0	195		
BF slope (ft/ft)																							
Bankfull Floodplain Area (acres)		<u> </u>			<u> </u>					<u> </u>					<u> </u>								
% of Reach with Eroding Banks					 					ļ					 								
Channel Stability or Habitat Metric		ļ			 					 					 								
Biological or Other																							

Table 9b. Baseline Stream Data Summary (UT 1 Downstream)Major Hill Mitigation Project - NCDMS Project Number 100015

Parameter	Gauge		Regional C	urve	Pre-	Existing Dov	g Condit vnstrear	tion (UT n)	51		Referenc	e Reach(e	s) Data		De Do	esign (UT ownstrea	[] 1 m)	Мо	nitoring	Baseline	(UT 1 D	ownstre	am)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					4.9		6.7	8.7		8.0		9.6	12.1		6.8	7.8	7.3	8.6		10.3	11.8		3
Floodprone Width (ft)					9.0		14.0	21.0		15		75	140		25	75	50	22		40	40		3
BF Mean Depth (ft)					0.4		0.6	0.8		0.8		1.1	1.4		0.4	0.8	0.6	0.4		0.6	0.6		3
BF Max Depth (ft)					0.7		0.9	1.2		1.1		1.7	2.0		0.6	0.8	0.7	0.7		0.9	1.2		3
BF Cross Sectional Area (ft ²)					3.8		3.8	3.8		8.0		11.4	14.7		3.8	3.8	3.8	3.5		5.8	7.5		3
Width/Depth Ratio					6.1		13.1	21.8		8.0		9.6	15.1		12.0	16.0	14.0	18.0		18.0	21.0		3
Entrenchment Ratio					1.4		2.2	4.3		1.9		7.1	13.0		3.7	9.6	6.9	2.6		3.4	3.9		3
Bank Height Ratio					1.6		2.2	2.8		1.0		1.2	1.8		1.0	1.3	1.2	1.0		1.0	1.0		3
Profile			-		=					2			-			8			•				
Riffle length (ft)																		5		16	47		1
Riffle slope (ft/ft)										0.0100		0.0207	0.0576		0.0000	0.0297	0.0264	0.0000		0.0252	0.0539		1
Pool length (ft)																		4.0		13.0	28.0		1
Pool Max depth (ft)										1.5		2.3	2.7		0.7	1.1	1.0	1.7		1.7	1.7		1
Pool spacing (ft)										22.0		40.8	81.0		21.9	58.4	29.2	18.0		24.0	48.0		1
Pattern			-		=					2			-			8			•				
Channel Beltwidth (ft)										17		26.3	38		21.9	43.8	29.2	22		29	44		
Radius of Curvature (ft)										9		23.6	113		14.6	72.9	21.9	14		22	73		
Rc:Bankfull width (ft/ft)										0.8		2.4	10.3		2	10	3	2		3	10		
Meander Wavelength (ft)										10		65.7	116		43.8	87.5	62	44		62	88		
Meander Width ratio										1.5		2.7	4.7		3	6	4	3		4	6		
																-							
Transport parameters																							
Reach Shear Stress (competency) lbs/ft ²																							
Max part size (mm) mobilized at bankfull																							
Stream Power (transport capacity) W/m ²																							
Additional Reach Parameters																-							
Rosgen Classification							Cg 5					Eb 5				E/C 4				E/C-	type		
Bankfull Velocity (fps)																							
Bankfull Discharge (cfs)							14.2				2	8.8 - 60.6				14.2				14	.2		
Valley Length (ft)																							
Channel Thalweg Length (ft)																							
Sinuosity							1.26				1	.2 - 1.46				1.12				1.	12		
Water Surface Slope (ft/ft)						(0.0147				0.00)53 - 0.025	58			0.0165				0.0	195		
BF slope (ft/ft)																							
Bankfull Floodplain Area (acres)		ļ			ļ					ļ								ļ					
% of Reach with Eroding Banks																							
Channel Stability or Habitat Metric					<u> </u>																		
Biological or Other																							

Table 10a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Major Hill Mitigation Project - NCDMS Project Number 100015

inajor ini inagation riojeet itezit	o rrojece		100010																									
		Cr	oss Section	n 1 (UT 1	Downstre	eam)			Cre	oss Section	12 (UT 1	Downstre	am)			Cre	oss Section	n 3 (UT 1]	Downstre	am)			Cre	oss Section	14 (UT 1]	Downstre	am)	
Parameter				Riffle							Riffle							Pool							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)	11.8							8.6							13.0							10.3						
Floodprone Width (ft) (approx)	40.0							22.0							NA							40.0						
BF Mean Depth (ft)	0.6							0.4							0.6							0.6						
BF Max Depth (ft)	1.2							0.7							1.7							0.9						
Low Bank Height	1.2							0.7							1.7							0.9						
BF Cross Sectional Area (ft ²)	7.5							3.5							8.4							5.8						
Width/Depth Ratio	18.6							21.1							NA							18.3						
Entrenchment Ratio	3.4							2.6							NA							3.9						
Bank Height Ratio	1.0							1.0							1.0							1.0						
d50 (mm)	25.4							25.4							6.0							25.4						

Table 10b. Monitoring Data - Stream Reach Data Summary

Major Hill Mitigation Project - NCDMS Project Number 100015

Parameter	Baseline (UT 1 Downstream)							M	Y-1 (UT 1	Downstre	am)			M	Y-2 (UT 1	l Downstro	eam)			M	Y-3 (UT 1	l Downstr	ream)			М	Y-5 (UT 1	Downsti	ream)			M	Y-7 (UT 1	Downstre	am)	
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
Only																									_											
BF Width (ft)	8.6		10.3	11.8		3																			_											<u> </u>
Floodprone Width (ft)	22	-	40	40		3																			-	-				-						└─── ′
BF Mean Depth (ft)	0.4		0.6	0.6		3										-				-					-		-	-			-					├ ────'
BF Max Depth (ff) $\text{DE Cross Sectional Area } (fr^2)$	3.5		5.8	1.2		3																-														
BF Cross Sectional Area (ff.)	10.0		10.0	21.0		2										-				-					-		-	-			-					├ ────'
Entropy above and a second sec	18.0		18.0	21.0		3			-												-	-			-	-				-		-		-		───
Entrenchment Ratio	2.0		3.4	5.9		2			-												-	-			-	-				-		-		-		───
Bank Height Ratio	1.0		1.0	1.0		3										Dre	file																			L
Riffle length (ft)	5		16	47		1	I		1						1				T	1	1				1	1	1				1	1		1		1
Riffle slope (ft/ft)	0.0000		0.0252	0.0539		1																														
Pool length (ft)	4.0		13.0	28.0		1												1																		
Pool Max depth (ft)	1.7		1.7	1.7		1																														
Pool spacing (ft)	18.0		24.0	48.0		1	<u>1</u>																													
															Pat	tern																				
Channel Beltwidth (ft)	22		29	44																																
Radius of Curvature (ft)	14		22	73																																
Rc:Bankfull width (ft/ft)	2		3	10																																
Meander Wavelength (ft)	44		62	88																																
Meander Width ratio	3		4	6																																
															Add	itional Re	ach Paran	neters																		
Rosgen Classification			E/C	type																					_											
Channel Thalweg Length (ft)			1	10																					-											
Sinuosity			1.	12																																
Water Surface Slope (Channel) (ft/ft)			0.0	195			_ _																		_											
BF slope (ft/ft)				1												-				1	-				_	-	1	1					1	-		
Ri%/RU%P%G%/S%																			<u> </u>					_		<u> </u>						I			<u> </u>	
SC%/SA%/G%/C%/B%BE%																					-			-			-								<u> </u>	
d16/d35/d50/d84/d95													1	1	1	I			I	I	1			-		I	1				I	ļ	I			
% of Reach with Eroding Banks																									-											
Channel Stability or Habitat Metric																									+						+					
Biological or Other																	1						1						1							

Table 10c. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Major Hill Mitigation Project - NCDMS Project Number 100015

		С	ross Secti	on 5 (UT	1 Upstrea	m)			C	ross Secti	on 6 (UT	1 Upstrea	m)			С	ross Secti	on 7 (UT 1	l Upstrea	m)			С	ross Secti	on 8 (UT	1 Upstrear	m)
Parameter				Riffle							Pool							Pool							Riffle		
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	M
BF Width (ft)	11.8							8.9							7.4							6.0					1
Floodprone Width (ft) (approx)	40.0							NA							NA							23.0					i
BF Mean Depth (ft)	0.6							1.0							1.6							0.5					1
BF Max Depth (ft)	1.1							2.0							2.5							0.8					
Low Bank Height	1.1							2.0							2.5							0.8					1
BF Cross Sectional Area (ft ²)	7.1							9.1							11.7							3.0					Ĺ
Width/Depth Ratio	19.6							NA							NA							12.0					1
Entrenchment Ratio	3.4							NA							NA							3.8					í –
Bank Height Ratio	1.0							1.0							1.0							1.0					1
d50 (mm)	25.4							6.0							6.0							25.4					1

		Cross Section 9 (UT 1 Upstream)						Cross Section 10 (UT 1 Upstream)											
Parameter		Pool									Riffle								
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+					
BF Width (ft)	7.0							10.9											
Floodprone Width (ft) (approx)	NA							40.0											
BF Mean Depth (ft)	0.7							0.3											
BF Max Depth (ft)	1.3							0.7											
Low Bank Height	1.3							0.7											
BF Cross Sectional Area (ft ²)	4.9							3.5											
Width/Depth Ratio	NA							33.9											
Entrenchment Ratio	NA							3.7											
Bank Height Ratio	1.0							1.0											
d50 (mm)	6.0							25.4											

Table 10d. Monitoring Data - Stream Reach Data Summary

Major Hill Mitigation Project - NCDMS Project Number 100015

Parameter		Bas	eline (UT	ine (UT 1 Upstream) MY-1 (UT 1 Upstream)					Ν	1Y-2 (UT	1 Upstr	eam)		MY-3 (UT 1 Upstream)						MY-5 (UT 1 Upstream)						MY-7 (UT 1 Upstream)									
						•	-		•				-			-		-	-	-	•		•	•	-	-									
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD n	Min	Mean	Med	Max	SD	n
Only																_		-		_															·
BF Width (ft)	6.0		10.9	11.8		3																													
Floodprone Width (ft)	23		40	40		3																													
BF Mean Depth (ft)	0.3		0.5	0.6		3		-																											
BF Max Depth (ft)	0.7		0.8	1.1		3										-		-																	(
BF Cross Sectional Area (ft ²)	3.0		3.5	/.1		3										_		-		_															
Width/Depth Ratio	12.0		19.6	33.9		3																													
Entrenchment Ratio	3.4		3.7	3.8		3										-		-																	(
Bank Height Ratio	1.0		1.0	1.5		3										n	rofilo																		
Piffle length (ft)	5		16	47		3	I								1		Tome								T					1					í
Riffle slope (ft/ft)	0.0000		0.0252	0.0539		3																													
Pool length (ft)	4.0		13.0	28.0		3																													
Pool Max depth (ft)	1.3		2.0	2.5		3																													í ———
Pool spacing (ft)	18.0		24.0	48.0		3																													
Pattern																																			
Channel Beltwidth (ft)	18		24	36																															·
Radius of Curvature (ft)	12		18	60																															1
Rc:Bankfull width (ft/ft)	2		3	10																															1
Meander Wavelength (ft)	36		51	72																															
Meander Width ratio	3		4	6																															i
			E/C	1			1								Addi	itional R	leach Parai	neters							1					1					
Rosgen Classification			E/C	type																															
Channel Thaiweg Length (ft)			1	08																															
Water Surface Slope (Chappel) (ft/ft)			1.	105																															
DE alarse (ft/ft)			0.0	193																										-					
BF slope (ff/ff)							-	1		1				1	1																				
K1%/KU%P%G%/S%												-		+	1	+				-	ł														
d16/d35/d50/d84/d05																																			í
% of Reach with Eroding Banks														1	1		1	1		1												1			_
Channel Stability or Habitat Metric							1																							1					
Biological or Other																									1					1					
Biological of Other																																			

m)				
MY5	MY5+			

Appendix E Groundwater Gauge Soil Profiles

Appendices Restoration Systems, LLC March 2019

AXIOM ENVIRONMENTAL, INC

218 Snow Avenue Raleigh, North Carolina 27603 919-215-1693

SOIL BORING LOG

Project/Site:	Major Hill
County, State:	Alamance, North Carolina
Sampling Point/ Coordinates:	GW-1 35.874565, -79.359097
Investigator:	Axiom Inc

<u>Notes</u>: Gauge located near old channel, area has been disturbed during construction. Soil profile has been disturbed.

	Matrix		Mottling		
Depth (inches)	Color	%	Color	%	Texture
0-4	10yr 4/3	80	10yr 4/6	20	Silty Clay
4-10	10yr 4/2	90	10yr 4/4	10	Clay
10-24	10yr 4/1	95	10yr 4/6	5	Clay

North Carolina Licensed Soil Scientist

Number:	1233
Signature:	W Grant Leub
Name/Print:	W. Grant Lewis
218 Snow Avenue Raleigh, North Carolina 27603 919-215-1693

Notes: Soil saturated at ~8"

SOIL BORING LOG

Project/Site:	Major Hill
County, State:	Alamance, North Carolina
Sampling Point/ Coordinates:	GW-2 35.874562, -79.359275
Investigator:	Axiom Inc

	Matrix		Mottling		
Depth (inches)	Color	%	Color	%	Texture
0-6	10yr 5/3	70	10yr 5/6	30	Silty Clay
6-8	10yr 5/2	60	10yr 6/6	20	Silty Clay
8-16	10yr 5/2	60	10yr 6/4	5	Silty Clay
16-24	10yr 5/2	85	10yr 6/4	10	Silty Clay some gravel included

Number:	1233
Signature:	W Grant Leub
Name/Print:	W. Grant Lewis

218 Snow Avenue Raleigh, North Carolina 27603 919-215-1693

SOIL BORING LOG

Project/Site:	Major Hill
County, State:	Alamance, North Carolina
Sampling Point/ Coordinates:	GW-3 35.875063, -79.359124
Investigator:	Axiom Inc

<u>Notes</u>: Saturated ~10"; Soil disturbed during construction

	Matrix		Mottling		
Depth (inches)	Color	%	Color	%	Texture
0-3	10yr 5/1	70	10yr 5/6	30	Silty Clay
3-8	10yr 5/2	100			Silty Clay
8-14	10yr 5/3	100		5	Silty Clay
14-20	10yr 4/3	95	10yr 6/4	5	Silty Clay/rocky
20+	-	-	-	-	Rocky

Number:	1233
Signature:	W Grant Leub
Name/Print:	W. Grant Lewis

218 Snow Avenue Raleigh, North Carolina 27603 919-215-1693

SOIL BORING LOG

Project/Site:	Major Hill
County, State:	Alamance, North Carolina
Sampling Point/ Coordinates:	GW-4/4a 35.876569, -79.3560568
Investigator:	Axiom

<u>Notes</u>: In old pond bed, bench excavated here. Some Fe- at surface. Saturated at 6"

	Matrix		Mottling		
Depth (inches)	Color	%	Color	%	Texture
0-2	10yr 6/2	60	10yr 6/6	40	Silty Clay
2-6	10yr 6/2	95	10yr 6/6	5	Silty Clay
6-14	10yr 6/1	90	10yr 6/3	10	Silty Clay
12-20	6/5GY	80	10yr 5/6	20	Clay

Number:	1233
Signature:	W Grant Leub
Name/Print:	W. Grant Lewis

218 Snow Avenue Raleigh, North Carolina 27603 919-215-1693

SOIL BORING LOG

Project/Site:	Major Hill
County, State:	Alamance, North Carolina
Sampling Point/ Coordinates:	GW-5 35.877017, -79.360568
Investigator:	Axiom Inc

<u>Notes</u>: In old pond bed, soil significantly disturbed during construction activities

	Matrix		Mottling		
Depth (inches)	Color	%	Color	%	Texture
0-4	6/5gy	100			Silty Clay
4-12	7.5yr 7/1	60	7.5yr 6/6	40	Silty Clay
12-20	7.5yr 8/2	65	7.5yr 7/6	35	Clay Loam

Number:	1233
Signature:	W Grant Leub
Name/Print:	W. Grant Lewis

218 Snow Avenue Raleigh, North Carolina 27603 919-215-1693

SOIL BORING LOG

Project/Site:	Major Hill
County, State:	Alamance, North Carolina
Sampling Point/ Coordinates:	GW-6 35.877175, -79.360758
Investigator:	Axiom

<u>Notes</u>: In old pond bed, soil significantly disturbed during construction activities

	Matrix		Mottling		
Depth (inches)	Color	%	Color	%	Texture
0-3	10yr 4/4	70	10yr 4/6	30	Silty Clay
3-8	7.5yr 5/1	100			Silty Clay
8-20	6/5GY	80	10yr 4/6	20	Silty Clay

Number:	1233
Signature:	W Grant Leub
Name/Print:	W. Grant Lewis

Appendix F Preconstruction Benthic Data

Preconstruction Benthic Results Habitat Assessment Dataforms

Appendices Restoration Systems, LLC March 2019

PAI ID NO			51232	51233
STATION			MH-1	MH-2
DATE			4/16/2018	4/16/2018
SPECIES	T.V.	F.F.G.		
PLATYHELMINTHES			2	
ANNELIDA				
Clitellata				
Oligochaeta		CG		
Tubificida				
Enchytraeidae		CG		1
Naididae				
Naidinae		CG		
Dero sp.	9.8	CG		7
Nais sp.	8.7	CG	1	
Slavina appendiculata	8.4	CG	1	1
Tubificinae w.h.c.		CG		1
Tubificinae w.o.h.c.		CG		2
ARTHROPODA				
Crustacea				
Copepoda				
Cyclopoida				
Cyclopidae				
Acanthocyclops sp.				2
Macrocyclops albidus				5
Isopoda				
Asellidae		SH		
Caecidotea sp.	8.4	CG	16	2
Amphipoda		CG		
Crangonyctidae				
Crangonyx sp.	7.2	CG	13	3
Insecta				
Ephemeroptera				
Baetidae		CG		
Baetis flavistriga	6.8	CG	1	
Heptageniidae		SC		
Maccaffertium modestum	5.7	SC	2	
Odonata				
Coenagrionidae		Р		
Ischnura sp.	9.5		1	10
Libellulidae		Р		
Libellula sp.	9.4	Р		1
Plathemis lydia	9.8			1
Plecoptera				
Nemouridae		SH		
Amphinemura sp.	3.8	SH		1

PAI ID NO			51232	51233
STATION			MH-1	MH-2
DATE			4/16/2018	4/16/2018
SPECIES	T.V.	F.F.G.		
Perlidae		Р		
Perlesta sp.	2.9	Р	1	
Hemiptera				
Belostomatidae				
Belostoma sp.	9.5	Р		1
Trichoptera				
Hydropsychidae		FC		
Diplectrona modesta	2.3	FC	4	
Philopotamidae		FC		
Chimarra aterrima	3.3	FC	1	
Coleoptera				
Elmidae		CG		
Optioservus sp.	2.1	SC		1
Hydrophilidae		Р		
Enochrus sp.	8.5	CG		1
Scirtidae		SC		
Scirtes sp.			1	15
Diptera				
Chironomidae				
Chironomus sp.	9.3	CG	19	14
Conchapelopia sp.	8.4	Р	2	
Cricotopus sp.		CG	1	
Cryptochironomus sp.	6.4	Р	1	
Micropsectra sp.	2.4	CG		1
Microtendipes pedellus gp.	3.9	CG		1
Parametriocnemus sp.	3.9	CG	7	
Polypedilum sp.		SH	1	
Polypedilum flavum	5.7	SH	1	
Procladius sp.	8.8	Р	1	2
Psectrocladius sp.		SH		2
Zavrelimyia sp.	8.6	Р	4	8
Culicidae		FC		
Anopheles sp.	8.6	FC		2
Culex sp.		FC		1
Simuliidae		FC		
Simulium sp.	4.9	FC	3	
TOTAL NO. OF ORGANISMS			84	86
TOTAL NO. OF TAXA			22	25
EPT INDEX			5	1
BIOTIC INDEX-ASSIGNED VALUES			7.22	8.50

3/06 Revision 6

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Station #1 (US)

TOTAL SCORE HH

Biological Assessment Unit, DWQ TOTAL SCORE 44
Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an
upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent
average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the for
select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two
descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.
Stream UT-1 to Pine Hill Br Location/road: Burnett Church Road Name)County Alamance
Date 4/16/19 CC# 03030002 Basin Cape For Subbasin 03-06-04
Observer(s) ∠T+ ∠M Type of Study: □ Fish @Benthos □ Basinwide □Special Study (Describe)
Latitude 35874619 Longitude - 71.351197 Ecoregion: MT P Slate Belt D Triassic Basin
Water Quality: Temperature 19.1 °C DO mg/1 Conductivity (corr.) 175.2 µS/cm pH 6.91
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include we you estimate driving thru the watershed in watershed land use.
Visible Land Lice: 10 % Forest % Pasidential 90 % Active Desture
%Fallow Fields % Commercial % Industrial % Other - Describe: % Active Crops
Watershed land use : ØForest ØAgriculture Urban Ø Animal operations upstream
Width: (meters) Stream 1.0 Channel (at top of bank) 1.5 Stream Depth: (m) Avg_0.2 Max 0.0
Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m)
Bank Angle: 75 ° or \Box NA (Vertical is 90° horizontal is 0° Angles > 90° indicate slope is towards mid shares 1 < 0
indicate slope is away from channel. NA if bank is too low for bank angle to matter)
Channelized Ditch
Deeply incised-steep, straight banks Both banks undercut at bend Channel filled in with sediment
Recent overbank deposits Bar development Buried structures Exposed bedrock
□ Excessive periphyton growth □ Heavy filamentous algae growth □Green tinge □ Sewage smell
Manmade Stabilization: IN DY: DRip-rap, cement, gabions D Sediment/grade-control structure DBerm/levee
Flow conditions : DHigh ZNormal DLow
Turbidity: Clear Slightly Turbid Turbid Tannic Milky Colored (from dyes)
Good potential for Wetlands Restoration Project?? ZYES DNO Details
Channel Flow Status
Useful especially under abnormal or low flow conditions.
A. Water reaches base of both lower banks, minimal channel substrate exposed
B. Water fills >75% of available channel, or <25% of channel substrate is exposed.
C. Water fills 25-75% of available channel, many logs/snags exposed.
D. Root mats out of water
E. Very little water in channel, mostly present as standing pools
Weather Conditions: Swa, ~50°F Photos: DN XY X Digital D35mm
Remarks: Stream is heavily impacted by livestock. Heavy post-shear on backs,
seament repartien in stream, and fices other 1

#1 (US)

I. Channel Modification	Score
A. channel natural, frequent bends	5
B. channel natural, infrequent bends (channelization could be old)	4
C. some channelization present	3
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	0
Evidence of dredging Evidence of desnagging=no large woody debris in stream Banks of uniform shape/h	eight
Remarks	ototal 3

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as **R**are, Common, or Abundant.

Rocks	Macrophytes	Sticks and leafpacks	R Snags and logs	Undercut banks or root mats
-------	-------------	----------------------	------------------	-----------------------------

AMOUNT OF REACH FAVORABLE FOR COLONIZATION OR COVER

	>70%	40-70%	20-40%	<20%		
	Score	Score	Score	Score		
4 or 5 types present	20	16	12	8		
3 types present	19	15	11	7		
2 types present	18	14	(10)	6		
1 type present	17	13	9	5		
No types present	0					
No woody vegetation in riparian zone Remarks_					Subtotal	10

III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks.

A. substrate with good mix of gravel, cobble and boulders	Score
1. embeddedness <20% (very little sand, usually only behind large boulders)	15
2. embeddedness 20-40%	12
3. embeddedness 40-80%	8
4. embeddedness >80%	3
B. substrate gravel and cobble	6
1. embeddedness <20%	. 14
2. embeddedness 20-40%	11
3. embeddedness 40-80%	. 6
4. embeddedness >80%	2
C. substrate mostly gravel	
1. embeddedness <50%	. 8
2. embeddedness >50%	. 4
D. substrate homogeneous	
I. substrate nearly all bedrock	
substrate nearly all sand	3
substrate nearly all detritus	2
substrate nearly all silt/ clay	0
Remarks	Subtotal

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Score
1. Pools Frequent (>30% of 200m area surveyed)	
a variety of pool sizes	10
 b. pools about the same size (indicates pools filling in) 	8
Pools Infrequent (<30% of the 200m area surveyed)	
a. variety of pool sizes	6
b. pools about the same size	(4)
B. Pools absent	o
5	ubtotal 4

□ Pool bottom boulder-cobble=hard □ Bottom sandy-sink as you walk ☑.Silt bottom □ Some pools over wader depth Remarks

Page Total 8

#1 (US)

v.	Riffle	Habitats

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riff	fles Frequent I Score	Riffles Infrequent
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stre B. riffle as wide as stream but riffle length is not 2X stream width C. riffle not as wide as stream and riffle length is not 2X stream width D. riffles absent	am 16 14 10	$ \begin{array}{c} \frac{5001}{12} \\ 0 \\ 3 \end{array} $
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream		Subtotal 7
VI. Bank Stability and Vegetation		
FACE UPSTREAM	Left I	Bank Rt. Bank
A. Banks stable		Diole Diole
1. little evidence of erosion or bank failure(except outside of bends), little poten	tial for erosion 7	/ 7
B. Erosion areas present		
 diverse trees, shrubs, grass; plants healthy with good root systems 		6
few trees or small trees and shrubs; vegetation appears generally healthy		5
sparse mixed vegetation; plant types and conditions suggest poorer soil bind	ling 3	3
mostly grasses, few if any trees and shrubs, high erosion and failure potentia	at high flow. 2)
S. little or no bank vegetation, mass erosion and bank failure evident	0	0,1
Remarks		Total 9

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

Remark	s	0 Subtotal	7
	D. Stream with minimal canopy - full sun in all but a few areas	2	
	B. Stream with full canopy - breaks for light penetration absent C. Stream with partial canopy - sunlight and shading are essentially equal	8	
	A. Stream with good canopy with some breaks for light penetration	10	

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

FACE UPSTREAM	Lft, Bank	Rt. Bank
Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, et	c) Score	Score
A. Riparian zone intact (no breaks)		
1. width > 18 meters	5	5
2. width 12-18 meters	4	4
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	(4)	(4)
b. width 12-18 meters.	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	T.
2. breaks common		
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters.	1	1
d. width < 6 meters	0	0
Remarks	- 1 ⁻ 1 - 1	Total 8

Page Total 26

Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.

#1 (US)

Supplement for Habitat Assessment Field Data Sheet

Site Sketch:

her comments:		

3/06 Revision 6

#Z (DS)

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Biological Assessment Unit, DWQ Directions for use: The observer is to

TOTAL SCORE 92

Directions for use: The upstream direction star average stream condition select the description wild descriptions, select an in	observer is to survey a mini ting above the bridge pool an ns. To perform a proper hab hich best fits the observed ha ttermediate score. A final ha	mum of 100 meters and the road right-of-v itat evaluation the of bitats and then circle abitat score is determ	with 200 meters prefer vay. The segment which server needs to get into the score. If the observ ined by adding the result	rred of stream, preferably n is assessed should represent the stream. To complete the ed habitat falls in between ts from the different metri	in an sent he form, n two ics.
Stream UT-1 + P	- Hill Br. Location/road:	Burrett Clauch PRO	ad Name	County Alamance	
Date 4/16/18	CC# 03030002	Basin Cape Fr	subbasin	03-06-04	
Observer(s) KJ + KM	Type of Study: 🗆 Fish 🛛	Benthos 🗖 Basinwi	de	escribe)	
Latitude 35.572710	Longitude - 71. 358640 E	coregion: 🗆 MT	P 🗆 Slate Belt 🗆 Ti	riassic Basin	
Water Quality: Tempe	erature 14.6 °C DO	mg/l Conductiv	vity (corr.) <u>154.9 µ</u> S/cm	pH_6.94	
Physical Characterizat you estimate driving th	ion: Visible land use refer iru the watershed in waters	s to immediate area hed land use.	that you can see from	sampling location - inclu	ude what
Visible Land Use: %Fallow Fields	95 %Forest % Commercial	%Residential	%Active Pasture %Other - Describe:	% Active Crops	
Watershed land use :	ØForest ØAgriculture □U	ban 🖾 Animal oper	ations upstream		
Width: (meters) Stream Wie Bank Height (from dee	hChannel (at top dth variable □ Large river pest part of riffle to top of b	of bank) 7.5 S >25m wide ank-first flat surface	tream Depth: (m) Avg	Max	
Bank Angle: 00 indicate slope is away fr Channelized Ditch	_ ⁶ or □ NA (Vertical is om channel. NA if bank is t	90°, horizontal is 0°. oo low for bank angl	Angles > 90° indicate s e to matter.)	ope is towards mid-chann	nel, < 90ª
Deeply incised-steep, Recent overbank dep Excessive periphyton Manmade Stabilization: Flow conditions : Hig	straight banks Both banks osits Bar develop 1 growth Heavy fila N DY: DRip-rap, ceme th Normal Low	undercut at bend oment mentous algae growt ent, gabions	Channel filled in wi Buried structures h Green tinge nent/grade-control struc	th sediment Exposed bedrock Sewage smell ture Berm/levee	
Good potential for	Wetlands Restoration Pro	ect?? VES	Colored (from dyes)		
Channel Flow Status Useful especial A. Water reach B. Water fills > C. Water fills 2 D. Root mats of E. Very little w	ly under abnormal or low flo es base of both lower banks, 75% of available channel, or 5-75% of available channel, at of water ater in channel, mostly prese	w conditions. minimal channel sub <25% of channel su many logs/snags exp nt as standing pools.	strate exposed bstrate is exposed osed		
Weather Conditions:		Photos: DN DY	Digital D35mm		
Remarks: Stream	reach it in a forested	area adjacent	to liverback past		

#Z (DS)

1. Channel Modification	Score
A. channel natural, frequent bends	5
B. channel natural, infrequent bends (channelization could be old)	(4)
C, some channelization present	3
D. more extensive channelization, >40% of stream disrupted	2
E. no bends, completely channelized or rip rapped or gabioned, etc	0
Evidence of dredging Evidence of desnagging=no large woody debris in stream Banks of uniform shape/	height .
RemarksSu	btotal 4

II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as Rare, Common, or Abundant.

C Rocks ______ Macrophytes ______ Sticks and leafpacks ______ Snags and logs ______ Undercut banks or root mats

AMOUNT OF REACH FAVORABLE FOR COLONIZATION OR COVER

	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	(16)	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0				
No woody vegetation in riparian zone Remarks					Subtotal 16

111. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks.

A. substrate with good mix of gravel, cobble and boulders	Scor	re
1. embeddedness <20% (very little sand, usually only behind large boulders)	. 15	-
2. embeddedness 20-40%	(12)	
3. embeddedness 40-80%	8	
4. embeddedness >80%	3	
B. substrate gravel and cobble		
1. embeddedness <20%	14	
2. embeddedness 20-40%	11	
3. embeddedness 40-80%	6	
4. embeddedness >80%	2	
C. substrate mostly gravel	~	
1. embeddedness <50%	8	
2. embeddedness >50%	4	
D. substrate homogeneous		
1. substrate nearly all bedrock	. 3	
substrate nearly all sand	. 3	
substrate nearly all detritus	2	
substrate nearly all silt/ clay	1	
Remarks	Subtotal	12

IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies.

A. Pools present	Sc	ore
 Pools Frequent (>30% of 200m area surveyed) 		
a. variety of pool sizes	. (10)
b. pools about the same size (indicates pools filling in)	8	
2. Pools Infrequent (<30% of the 200m area surveyed)		
a. variety of pool sizes	. 6	
b. pools about the same size	4	
B. Pools absent	. 0	
	Subtotal	01
Bool hottom haulder settletet 1 🛱 David 1 1 1 1 🗰 🖉 🖉 🖉 🖉	onorona	

Devel bottom boulder-cobble=hard Debttom sandy-sink as you walk Debttom Some pools over wader depth Remarks

Page Total 42

Faara

V. Riffle Habitats	
--------------------	--

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area.	Riffles Frequent Rif	fles Infrequent
	Score S	core
A. well defined riffle and run, riffle as wide as stream and extends 2X width of s	tream 16 1	2
B. riffle as wide as stream but riffle length is not 2X stream width	(14) 7	1
C riffle not as wide as stream and riffle length is not 2X stream width	10 3	1
D riffles abcant	0	1
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream		Subtotal 14
VI. Bank Stability and Vegetation		
FACE UPSTREAM	Left Ba	nk Rt. Bank
	Sec	ore Score
A. Banks stable		
L little evidence of erosion or bank failure(except outside of bands) little not	tential for erosion (7)	6)
B. Erosion areas present	central for crosion.	U
1. diverse trees, shrubs, grass; plants healthy with good root systems	6	6
2. few trees or small trees and shrubs: vegetation appears generally healthy	5	5
3 snarse mixed vegetation: plant types and conditions suggest poorer soil b	inding 2	3
4 mostly grooses four if ony trees and shrips high areains and Giller anter	tial at high 0	2
4. mostly grasses, iew if any frees and shrubs, high crosion and failure poter	itial at high flow 2	2
5. little or no bank vegetation, mass erosion and bank failure evident	0	0
		Total 14
Remarks		

VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block out sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric.

Remarks		Subtotal	10
I	E. No canopy and no shading	0	
1	D. Stream with minimal canopy - full sun in all but a few areas	2	
9	C. Stream with partial canopy - sunlight and shading are essentially equal	7	
I	Stream with full canopy - breaks for light penetration absent	8	
1	A. Stream with good canopy with some breaks for light penetration	(10)	

VIII. Riparian Vegetative Zone Width

Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: A break in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as paths down to stream, storm drains, uprooted trees, otter slides, etc.

		FACE UPS	STREAM		Lft. Bank	Rt. Bank
Dominant vegetation: D Trees	□ Shrubs	Grasses	□ Weeds/old field	DExotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no	breaks)					
 width > 18 meter 	rs				5	5
2. width 12-18 met	ers				A	(A)
3. width 6-12 mete	rs	***************	******		3	3
4. width < 6 meters	S				2	2
B. Riparian zone not intact	(breaks)					
 breaks rare 						
a. width >	18 meters				4	4
b. width 1	2-18 meters				3	3
c. width 6	-12 meters	****************	*******		2	2
d. width <	6 meters				1	ĩ
2. breaks common						
a. width >	18 meters				3	3
b. width 1	2-18 meters				2	2
c, width 6	-12 meters				1	ĩ
d. width <	6 meters				0	0
Remarks					Т	otal 8
					Page To	tal 46

Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream. TOTAL SCORE

#Z (DS)

Supplement for Habitat Assessment Field Data Sheet

Stream Width

This side is 45° bank angle.

Site Sketch:

Other comments:			

Appendix G As-built Plan Sheets

Appendices Restoration Systems, LLC March 2019

AS-BUILT PLANS MAJOR HILL SITE

LOCATION: ALAMANCE COUNTY, NORTH CAROLINA

TYPE OF WORK: STREAM RESTORATION AND ENHANCEMENT (CLEARING, GRUBBING, GRADING, EROSION CONTROL AND PLANTING)

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	MAJOR HILL SITE	1	

MARCH 11, 2019

THE STATE OF NORTH CAROLINA, DIVISION OF MITIGATION SERVICÉS DMS PROJECT ID NO. 10015 SPO FILE NUMBERS 01-BA, 01-BB, 01-BC & 01-BD NC DMS CONTRACT# 7193 RFP# 16-006990 LATITUDE 35.873206 LONGITUDE -79.360906 (WGS84)

INDEX OF SHEETS

SHEET NUMBER

01 01A 03 THRU 03D

SHEET Title Sheet

Symbology

- -UT 1- Horizontal Control Data

CONVENTIONAL
Note: Not to ScalePLAN
*S.U.E. =SHEET
Subsurface
Utility
Engineering

BOUNDARIES AND PROPERTY:

State Line	
County Line	
Township Line	
City Line	
Reservation Line	· ·
Property Line	
Existing Iron Pin	
Computed Property Corner	
Property Monument	- ECM
Parcel/Sequence Number	- (123)
Existing Fence Line	xxx-
Proposed Woven Wire Fence	- 0
Proposed Chain Link Fence	
Proposed Barbed Wire Fence	
Existing Wetland Boundary	WLB
Proposed Wetland Boundary	
Existing Endangered Animal Boundary ———	EAB
Existing Endangered Plant Boundary	— —— ЕРВ ————
Existing Historic Property Boundary	

BUILDINGS AND OTHER CULTURE:

Gas Pump Vent or U/G Tank Cap	0
Sign ———	⊙ s
Well	Ŵ
Small Mine	☆
Foundation ———	
Area Outline	
Cemetery	†
Building	
School	
Church	
Dam	

HYDROLOGY:

Stream or Body of Water	
Hydro, Pool or Reservoir	— []
Jurisdictional Stream	
Buffer Zone 1	BZ 1
Buffer Zone 2	BZ 2
Flow Arrow	
Disappearing Stream	>
Spring	
Wetland	¥
Proposed Lateral, Tail, Head Ditch ———	

RIGHT OF WAY & PROJECT CONTROL:

Secondary Horiz and Vert Control Point	\bullet
Primary Horiz Control Point	\bigcirc
Primary Horiz and Vert Control Point	

	<u>^</u>
Exist Permanent Easment Pin and Cap ———	$\langle \cdot \rangle$
New Permanent Easement Pin and Cap ——	\bigotimes
Vertical Benchmark	
Existing Right of Way Marker	\bigtriangleup
Existing Right of Way Line	
New Right of Way Line	
New Right of Way Line with Pin and Cap —	- (k)
New Right of Way Line with Concrete or Granite R/W Marker	
New Control of Access Line with Concrete C/A Marker	
Existing Control of Access	(<u>Ĉ</u>)
New Control of Access	
Existing Easement Line	E
New Conservation Easement	E
New Temporary Drainage Easement	TDE
New Permanent Drainage Easement	PDE
New Permanent Drainage / Utility Easement	DUE
New Permanent Utility Easement	PUE
New Temporary Utility Easement	TUE
New Aerial Utility Easement	AUE

ROADS AND RELATED FEATURES:

Existing Edge of Pavement	
Existing Curb	
Proposed Slope Stakes Cut	<u>C</u>
Proposed Slope Stakes Fill	F
Proposed Curb Ramp	CR
Existing Metal Guardrail ————	<u> </u>
Proposed Guardrail —————	<u> </u>
Existing Cable Guiderail	
Proposed Cable Guiderail	
Equality Symbol	\oplus
Pavement Removal	$\times\!\!\times\!\!\times\!\!\times\!\!\times$
VEGETATION:	
Single Tree	යි
Single Shrub	٥

Single Shrub		¢	3	
Hedge	~~~~	~~~~	~~~~	~~~~
Woods Line	ىـــز:بــ	<u></u>	ŗ_r.ĵr	ഹ്ന
Orchard	÷	÷	÷	ු
Vineyard		Viney	ard	

EXISTING STRUCTURES:

MAJOR:	
Bridge, Tunnel or Box Culvert	CONC
Bridge Wing Wall, Head Wall and End Wall-) CONC WW (
MINOR: Head and End Wall	CONC HW

Pine Culvert	
	,
Drainage Box: Catch Basin, DI or JB	
Paved Ditch Gutter	
Storm Sewer Manhole	G
Storm Sewer	s
UTILITIES:	
POWER:	
Existing Power Pole	•
Proposed Power Pole	6
Existing Joint Use Pole	
Proposed Joint Use Pole	-6-
Power Manhole	P
Power Line Tower	\boxtimes
Power Transformer	\bowtie
U/G Power Cable Hand Hole	
H-Frame Pole	•—•
U/G Power Line LOS B (S.U.E.*)	— — — P—
U/G Power Line LOS C (S.U.E.*)	P P
U/G Power Line LOS D (S.U.E.*)	P
TELEPHONE:	
Existing Telephone Pole	-•-
WATER:	
Water Manhole	W
Water Meter	0
Water Valve	\otimes
Water Hydrant	Ŷ
U/G Water Line LOS B (S.U.E*)	
U/G Water Line LOS C (S.U.E*)	w
U/G Water Line LOS D (S.U.E*)	w
Above Ground Water Line	A/G Wat

GAS:

Gas Valve	- 🛇
Gas Meter	- \$
U/G Gas Line LOS B (S.U.E.*)	— — — — - c -
U/G Gas Line LOS C (S.U.E.*)	c_
U/G Gas Line LOS D (S.U.E.*)	G—
Above Ground Gas Line	A/G Go
SANITARY SEWER:	
Sanitary Sewer Manhole	-
Sanitary Sewer Cleanout	- 🕀
U/G Sanitary Sewer Line	ss
Above Ground Sanitary Sewer	A/G Sanitary

		PROJECT NAME: MAJOI	SHEET NAME (MBOLOGY R HILL STREAM COUNTY:	AND WETLA	SHEET NUMBER O/A ND RESTORATION SITE DATE: 2018
			SUNGA		GN GROUP, P.A.
————́		Axiom Environmental, Inc		RALEN TEL (9 ENG F	NES FRANKLIN KOAD 3H, NORTH CAROLINA 27606 19) 859-2243 IRM LICENSE NO. C-890
	SS Earrand A	Aria Line LOS P	(CIIE*)		
			(3.0.L.) —		+ 555
	SS Forced A	Main Line LOS C Main Line LOS D	(S.U.E.*)		
	MISCELLANE	DUS:	(0.0.1.)		
	Utility Pole				•
	Utility Pole	with Base ——			-
	Utility Locate	ed Object			0
	Litility Traffic				
		own U/G Line U		= *)	20 2010
			JJ B (J.U.E		
			A		
	Undergroun	a Storage Lank, .	Approx. Loc.	. ——	
	A/G Tank; V	vater, Gas, Oil –			
•	Geoenvironr	mental Boring —			€
	U/G Test Ho	ole LOS A (S.U.E	.*)		٢
	Abandoned	According to Uti	lity Records		AATUR
	End of Infor	mation			E.O.I.
	AS-BUILT	<i>r</i> :			
	Stream Ga	uge			\bigcirc
					Ŭ
	Groundwate	r Gauge ———			# ●
	Benthic & V	Vater Quality Stat	ion		<u></u> 1
	Origin Point	t on CVS Plots			
	CVS Plots				#
	Cross Sectio	n ———			— XS-10R
	Adjusted Str	eam Structure			\frown
15	Not Constru	cted			\times
	Riffle Rip Ro	qr			ૹ૽ૼૡૢ૿ૹૼૡૢૢૢૢૢૢૢૢૢૢૢૢૹૻૡૢૢૢૢૢૼૹૢૡૢ ૺઽઽૺૢઽઽઽૢઽઽૺ
Sewer					

	C−I PI Sta 0+01.06 Δ = 7*07' 53.5* (LT) D = 337*02' 02.4* L = 2.12' T = 1.06' R = 17.00'	C−6 PI Sta I+0I.92 Δ = 34°05′12.6″(RT) D = 409°15′20.0″ L = 8.33′ T = 4.29′ R = 14.00′	C−II PI Sta I+97J2 Δ = 24 44'5I.5" (LT) D = 409'15' 20.0" L = 6.05' T = 3.07' R = 14.00'	$\begin{array}{l} C-16\\ PI Sta 3+08.40\\ \bigtriangleup = 36' 15' 58.9'' (RT)\\ D = 477' 27' 53.4''\\ L = 7.60'\\ T = 3.93'\\ R = 12.00' \end{array}$	$\begin{array}{l} C-2I\\ PI Sta 4+29.I7\\ \bigtriangleup = 42^{\circ} 45^{\circ} 33.0^{\circ} (RT)\\ D = 409^{\circ} 15^{\circ} 20.0^{\circ}\\ L = 10.45^{\circ}\\ T = 5.48^{\circ}\\ R = 14.00^{\circ} \end{array}$	$\begin{array}{l} C-26\\ PI Sta 5+28.88\\ \Delta = 4l^{\circ} 02^{\prime} 47.1^{\prime\prime}(LT)\\ D = 417^{\prime\prime} 27^{\prime\prime} 53.4^{\prime\prime\prime}\\ L = 8.60^{\prime}\\ T = 4.49^{\prime}\\ R = 12.00^{\prime} \end{array}$	C−31 PI Sta 6+13.06 Δ = 19 58' 46.8' (D = 477* 27' 53.4 L = 4.18' T = 2.11' R = 12.00'	RT) "
	C-2 PI Sta 0+16.33 △ = 17*25'00.0"(RT) D = 477*27'53.4" L = 3.65' T = 1.84' R = 12.00'	C−7 PI Sta I+20.60 Δ = I7*46'35.0*(LT) D = 409*15'20.0" L = 4.34' T = 2.19' R = I4.00'	C−I2 PI Sta 2+I5.92 Δ = I8' 45' 46.8" (RT) D = 477' 27' 53.4" L = 3.93' T = I.98' R = I2.00'	$\begin{array}{l} C-17\\ PI Sta 3+30.22\\ \bigtriangleup = 50^{\circ} 52^{\prime} 28.6^{\prime\prime} (LT)\\ D = 477^{\circ} 27^{\prime} 53.4^{\prime\prime}\\ L = 10.66^{\prime}\\ T = 5.71^{\prime}\\ R = 12.00^{\prime} \end{array}$	$\begin{array}{l} C-22\\ PI Sta 4+52.32\\ \Delta = 50^{\circ} 14^{\prime} 11.7^{\circ} (LT)\\ D = 477^{\circ} 27^{\prime} 53.4^{\circ}\\ L = 10.52^{\prime}\\ T = 5.63^{\prime}\\ R = 12.00^{\prime} \end{array}$	$\begin{array}{l} C-27\\ PI Sta 5+45.75\\ \bigtriangleup = 18' 03' 33.0'' (RT)\\ D = 477' 27' 53.4''\\ L = 3.78'\\ T = 1.91'\\ R = 12.00' \end{array}$	C-32 PI Sta 6+33.59 $\Delta = 53^{*}32' 41.2''$ D = 409' 15' 20.0' L = 13.08' T = 7.06' R = 14.00'	(LT) "
	C-3 PI Sta 0+38.0I $\Delta = 37" 38' 57.5" (LT)$ D = 337" 02' 02.4" L = II.17' T = 5.80' R = I7.00'	C-8 PI Sta I+39,83 △ = 27° 39′ 39,9″ (RT) D = 409″ 15′ 20.0″ L = 6,76′ T = 3,45′ R = 14,00′	$\begin{array}{l} C-I3\\ PI Sta 2+36.54\\ \Delta = 39^{\circ} 45^{\prime} 57.1^{\circ} (LT)\\ D = 409^{\circ} 15^{\prime} 20.0^{\circ}\\ L = 9.72^{\prime}\\ T = 5.06^{\prime}\\ R = 14.00^{\prime} \end{array}$	C−18 PI Sta $3+51.50$ $\triangle = 29' 48' 29.2" (RT)$ D = 409' 15' 20.0" L = 7.28' T = 3.73' R = 14.00'	C-23 PI Sta 4+72.60 $\Delta = 28' 4l' 33.7'' (RT)$ D = 477' 27' 53.4'' L = 6.0l' T = 3.07' R = 12.00'	$\begin{array}{l} C-28\\ PI Sta 5+60.95\\ \Delta = 28^{*} 35' 0I.0'' (LT)\\ D = 477' 27' 53.4''\\ L = 5.99'\\ T = 3.06'\\ R = 12.00' \end{array}$	C-33 PI Sta 6+62.36 $\Delta = 6l^{\circ}52' OI.3" (I)$ D = 409' 15' 20.0' L = 15.12' T = 8.39' R = 14.00'	RT)
	C-4 PI Sta 0+60.74 $\Delta = 52^{*}55' 07.4^{*} (RT)$ $D = 477^{*}27' 53.4^{*}$ L = 11.08' T = 5.97' R = 12.00'	C−9 PI Sta I+58.83 $\Delta = 4l^{\circ}16' 19.2" (LT)$ D = 477' 27' 53.4" L = 8.64' T = 4.52' R = 12.00'	$\begin{array}{l} C-14\\ PI \; Sta \; 2+60.03\\ \Delta \; = \; 58"\; 31'\; 57.5"\; (RT)\\ D \; = \; 409"\; 15'\; 20.0"\\ L \; = \; 14.30'\\ T \; = \; 7.85'\\ R \; = \; 14.00' \end{array}$	$\begin{array}{l} C-19\\ PI Sta 3+78.67\\ \Delta = 3' 33' 42.2''(RT)\\ D = 477' 27' 53.4''\\ L = 6.6''\\ T = 3.39'\\ R = 12.00' \end{array}$	$\begin{array}{l} C-24\\ PI Sta 4+90.84\\ \Delta = 28^{\circ} 26' 05.6'' (LT)\\ D = 477' 27' 53.4''\\ L = 5.96'\\ T = 3.04'\\ R = 12.00' \end{array}$	$\begin{array}{l} C-29\\ PI Sta 5+60.95\\ \bigtriangleup = 28^{*} 35^{\prime} 0I.0^{*} (LT)\\ D = 477^{*} 27^{\prime} 53.4^{*}\\ L = 5.99^{\prime}\\ T = 3.06^{\prime}\\ R = I2.00^{\prime} \end{array}$	C-34 PI Sta 6+86.73 $\Delta = 45^{\circ}49' 42.1'($ D = 477' 27' 53.4 L = 9.60' T = 5.07' R = 12.00'	'LΤ) 10
	C-5 PI Sta 0+80.79 $\triangle = 44^{\circ} 5I' 24.6" (LT)$ $D = 409^{\circ} 15' 20.0"$ L = 10.96' T = 5.78' R = 14.00'	C-10 PI Sta 1+78.97 $\Delta = 26''31''59.6"'(RT)$ D = 409''15' 20.0"' $L = 6.48'T = 3.30'R = 14.00'$	$\begin{array}{l} C-15\\ PI \; Sta \; 2+86.79\\ \Delta \; = \; 39" \; 24" \; 216" \; (LT)\\ D \; = \; 477" \; 27' \; 53.4"\\ L \; = \; 8.25'\\ T \; = \; 4.30'\\ R \; = \; 12.00' \end{array}$	$\begin{array}{l} C-20\\ PI Sta 4+02.62\\ \Delta = 5l' 30' 58.4'' (LT)\\ D = 409' 15' 20.0''\\ L = 12.59'\\ T = 6.76'\\ R = 14.00' \end{array}$	$\begin{array}{l} C-25\\ PI Sta 5+08.78\\ \bigtriangleup = 36^{*} 31' I3.9^{*} (RT)\\ D = 477^{*} 27' 53.4^{*}\\ L = 7.65'\\ T = 3.96'\\ R = I2.00' \end{array}$	$\begin{array}{l} C-30\\ PI Sta 5+98.53\\ \bigtriangleup = I4' 45' 43.7"(LT)\\ D = 477' 27' 53.4"\\ L = 3.09'\\ T = 1.55'\\ R = I2.00' \end{array}$	C-35 PI Sta 7+08.83 $\triangle = 37^{\circ}44' 09.3''$ D = 409' 15' 20.0' L = 9.22' T = 4.78' R = 14.00'	(RT) "
11_Hud_AB_PSH_03.dgn	PC Sta. C PT Sta. C	House PC Starl PC Starl PC PL PL PL P	bit Star Star	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	bit 14 -29 -21 14 -15 14 bit 14 -29 -23 -23 -23 15 bit 14 -29 -23 -23 -23 15 bit 14 -29 -23 -23 16 16 bit 14 -29 -23 -23 16 16 bit 15 14 -23 -23 16 16 bit 14 -23 -34 16 16 16 bit 14 -34 -34 16 16 16 bit 14 -34 -34 16 16 16 bit 15 16 -34 16 16 16 bit 15 16 16 16 16 16 bit 16 16 16 16 16 16 bit 16 16 16 16	CH1 L1 CH2 L2 CH3 L3 CH4 L4 CH5 L5 CH6 L6 CH7 L7 CH8 L8 CH9 L9 CH10 L10 CH11 L11 CH12 L12 CH13 L13 CH14 L14 CH15 L15 CH16 L16 CH17 L17	2.00 12.37 3.63 14.08 10.97 11.37 10.69 9.16 10.68 11.66 8.21 12.45 4.33 13.62 6.69 11.17 8.46 12.72 6.43 11.89 6.00 13.84 3.91 13.61 9.52 10.99 13.69 16.01 8.09 13.72 7.47 12.45 10.31	\$12*36'39"E \$12*36'39"E \$16*19'34"E \$07*37'04"E \$01*05'26"W \$17*44'03"E \$36*33'31"E \$36*33'31"E \$10*05'58"E \$16*21'36"W \$06*04'06"E \$28*29'49"E \$11*27'12"E \$05*35'24"W \$03*17'53"E \$12*11'11"E \$01*38'39"W \$15*28'29"W \$05*09'41"E \$25*47'50"E \$12*31'50"E \$00*44'09"W \$11*38'16"E \$24*00'42"E \$14*37'49"E \$05*14'55"E \$25*07'54"E \$15*24'54"E \$15*31'05"W \$06*11'06"E \$25*53'17"E \$06*11'06"E \$25*53'17"E \$07*45'17"E \$10*22'42"W \$15*03'32"E \$40*29'46"E
3/14/2C Major 1 iharveu		5 <u>52.18</u> +17. <u>87</u> +1 <u>3.94</u> +1 <u>3.94</u> +1 <u>3.94</u> -1 <u>5.67</u>	475256 378889 47527 47527 47527 47527 47527 47526 41206 41206 41206 41206 41206	+43.85 5+12.47 5+04.82 4+75.54 4+69.53 4+69.53	147 150 188 193 193 163	CH18 L18 CH19	7.20 20.22 6.53	S25°35'32"E S10°41'17"E S05°05'34"W

		SUDVE	HEET N		SHEET NUMBER
	PROJECT	NAME: MAJOR	DAI HILL	<u>'A-UII</u> STREAM AND WETLA	ש און
			cou	INTY: ALAMANCE	DATE: 20/8
			S	UNGATE DESI Pale TEL (ENG	CN GROUP, P.A. ONES FRANKLIN ROAD IGH, NORTH CAROLINA 27606 919 859-224 FIRM LICENSE NO. C-890
	Axiom	Environmental, Inc.			
			3/	-DocuSigned by: C Josting C	AROLINI AROLINI ALLINI NEERIO NEERIO NEERIO
				ATE:	
				DOCUMENT NOT C	ONSIDERED FINAL
			U	INLESS ALL SIGNA	TURES COMPLETED
	-L	JT1- STRE	EAM	ALIGNMENT	T DATA
TING	STATION	LENGTH		NORTHING	EASTING
38.5694	L19	13.98		S20°5	52'25"W
	CH20	12.17		S04°	53'04"E
	L20	15.24		S30°3	38'33"E
	CH21	10.21		S09°	15'47"E
	L21	12.56		S12°0	07'00"W
	CH22	10.19		S13°(00'06"E
	L22	12.31		S38°(07'12"E
	CH23	5.95		S23°4	46'25"E
	L23	12.26		S09°2	25'38"E
	CH24	5.89		S23°3	38'41"E
	L24	11.06		S37°	51'44"E
	CH25	7.52		S19°:	36'07"E
	L25	11.92		S01°2	20'30"E
	CH26	8.41		S21°	51'54"E
	L26	10.87		S42°2	23'17"E
	CH27	3.77		S33°2	21'31"E
	L27	10.26		\$24°	19'44"E
	CH28	5.92		S38°	37'15"E
	L28	11.63		\$52°	54'45"E
	CH29	9.20		S33°4	43'12"E
	L29	12.09		S14°3	31'38"E
	CH30	3.08		S21°	54'30"E
	L30	10.88		S29°	17'22"E
	CH31	4.16		S19°	1/'59"E
	L31	11.40		S09°	18'35"E
	CH32	12.61		S36°(04'56"E
	L32	14.36		S62°	51'16"E
	CH33	14.39		S31°	55'16"E
	L33	12.58		S00°	59'15"E
	CH34	9.34		S23°	54'06"E
	L34	12.79		S46°4	48'57"E

S15°44'54"E S13°31'05"W S06°11'06"E S25°53'17"E S07°45'17"E S10°22'42"W S15°03'32"E S40°29'46"E S25°35'32"E S10°41'17"E

CH35

L35 8.99

9.05

S27°56'53"E

S09°04'48"E

NT DATA	-l	JT1-STR	EAM	ALIGNMEN	Г DATA	
EASTING	STATION	LENGTH		NORTHING	EASTING	
9°04'48"E	L35	8.99		S09°	04'48"E	
3°00'13"E	CH36	2.54		S03°	00'13"E	
3°04'23"W	L36	18.50		S03°04'23"W		
2°41'16"E	CH37	14.78		S22°	41'16"E	
8°26'55"E	L37	13.30		S48°	26'55"E	
7°17'21"E	CH38	5.42		S37°	17'21"E	
6°07'46"E	L38	12.20		S26°	07'46"E	
6°24'29"E	CH39	12.10		S56°	24'29"E	
6°41'11"E	L39	11.32		S86°	41'11"E	
8°20'57"E	CH40	11.39		S58°	20'57"E	
0°00'43"E	L40	8.57		S30°	00'43"E	
4°55'29"E	CH41	6.18		S44°	55'29"E	
9°50'14"E	L41	12.81		S59°	50'14"E	
1°33'19"E	CH42	8.78		S41°	33'19"E	
3°16'24"E	L42	9.17		S23°	16'24"E	
4°21'57"E	CH43	8.64		S44°	21'57"E	
5°27'30"E	L43	9.54		S65°	27'30"E	
5°01'06"E	CH44	5.07		S55°	01'06"E	
4°34'42"E	L44	10.70		S44°	34'42"E	
5°44'15"E	CH45	4.64		S55°	44'15"E	
6°53'48"E	L45	10.77		S66°	53'48"E	
3°17'41"E	CH46	11.21		S43°	17'41"E	
9°41'35"E	L46	16.13		S19°	41'35"E	
4°09'04"E	CH47	19.61		S64°	09'04"E	
1°23'27"E	L47	22.68		N71°	23'27"E	
6°48'30"E	CH48	18.66		S66°	48'30"E	
5°00'27"E	L48	13.78		S25°	00'27"E	
1°29'08"E	CH49	6.55		S11°	29'08"E	
2°02'10"W	L49	16.59		S02°	02'10"W	
8°53'01"E	CH50	12.33		S28°	53'01"E	
9°48'12"E	L50	12.57		S59°	48'12"E	
1°58'55"E	CH51	7.35		S41°	58'55"E	
4°09'38"E	L51	13.83		S24°	09'38"E	
0°14'12"E	CH52	12.31		S50°	14'12"E	
6°18'46"E	L52	15.90		S76°	18'46"E	
3°22'45"E	CH53	9.35		S53°	22'45"E	
0°26'45"E	L53	14.13		S30°	26'45"E	
6°15'58"E	CH54	12.20		S56°	15'58"E	

-l	JT1-STREA	M ALIGNMENT DATA		UT1-STREA	AM ALIGNMENT DATA	-	-UT1- STREAM ALIGNMENT DATA		
STATION	LENGTH	NORTHING EASTING	STATION	LENGTH	NORTHING EASTING	STATION	LENGTH	NORTHING EASTING	
L35	8.99	S09°04'48"E	L35	8.99	S09°04'48"E	L54	18.14	S82°05'11"E	
CH36	2.54	S03°00'13"E	CH36	2.54	S03°00'13"E	CH55	14.24	S51°31'24"E	
L36	18.50	S03°04'23"W	L36	18.50	S03°04'23"W	L55	13.42	S20°57'37"E	
CH37	14.78	S22°41'16"E	CH37	14.78	S22°41'16"E	CH56	8.41	S37°14'33"E	
L37	13.30	S48°26'55"E	L37	13.30	S48°26'55"E	L56	18.07	S53°31'29"E	
CH38	5.42	S37°17'21"E	CH38	5.42	S37°17'21"E	CH57	11.80	S30°21'16"E	
L38	12.20	S26°07'46"E	L38	12.20	S26°07'46"E	L57	12.12	S07°11'03"E	
CH39	12.10	S56°24'29"E	CH39	12.10	S56°24'29"E	CH58	5.90	S18°31'09"E	
L39	11.32	S86°41'11"E	L39	11.32	S86°41'11"E	L58	13.87	S29°51'16"E	
CH40	11.39	S58°20'57"E	CH40	11.39	S58°20'57"E	CH59	17.01	S04°40'47"W	
L40	8.57	S30°00'43"E	L40	8.57	S30°00'43"E	L59	23.01	S39°12'49"W	
CH41	6.18	S44°55'29"E	CH41	6.18	S44°55'29"E	CH60	18.00	S09°12'26"W	
L41	12.81	S59°50'14"E	L41	12.81	S59°50'14"E	L60	14.73	S20°47'57"E	
CH42	8.78	S41°33'19"E	CH42	8.78	S41°33'19"E	CH61	6.12	S32°34'05"E	
L42	9.17	S23°16'24"E	L42	9.17	S23°16'24"E	L61	21.64	S44°20'14"E	
CH43	8.64	S44°21'57"E	CH43	8.64	S44°21'57"E	CH62	21.32	S08°01'28"E	
L43	9.54	S65°27'30"E	L43	9.54	S65°27'30"E	L62	16.82	S28°17'18"W	
CH44	5.07	S55°01'06"E	CH44	5.07	S55°01'06"E	CH63	5.82	S18°58'40"W	
L44	10.70	S44°34'42"E	L44	10.70	S44°34'42"E	L63	17.80	S09°40'02"W	
CH45	4.64	S55°44'15"E	CH45	4.64	S55°44'15"E	CH64	12.26	S33°47'10"W	
L45	10.77	S66°53'48"E	L45	10.77	S66°53'48"E	L64	16.54	S57°54'19"W	
CH46	11.21	S43°17'41"E	CH46	11.21	S43°17'41"E	CH65	11.51	S39°15'42"W	
L46	16.13	S19°41'35"E	L46	16.13	S19°41'35"E	L65	18.75	S20°37'06"W	
CH47	19.61	S64°09'04"E	CH47	19.61	S64°09'04"E	CH66	9.24	S35°29'16"W	
L47	22.68	N71°23'27"E	L47	22.68	N71°23'27"E	L66	17.64	S50°21'25"W	
CH48	18.66	S66°48'30"E	CH48	18.66	S66°48'30"E	CH67	21.45	S13°47'15"W	
L48	13.78	S25°00'27"E	L48	13.78	S25°00'27"E	L67	27.95	S22°46'56"E	
CH49	6.55	S11°29'08"E	CH49	6.55	S11°29'08"E	CH68	4.13	S14°51'52"E	
L49	16.59	S02°02'10"W	L49	16.59	S02°02'10"W	L68	11.74	S06°56'49"E	
CH50	12.33	S28°53'01"E	CH50	12.33	S28°53'01"E	CH69	2.31	S02°31'33"E	
L50	12.57	S59°48'12"E	L50	12.57	S59°48'12"E	L69	13.33	S01°53'44"W	
CH51	7.35	S41°58'55"E	CH51	7.35	S41°58'55"E	CH70	3.40	S04°36'13"E	
L51	13.83	S24°09'38"E	L51	13.83	S24°09'38"E	L70	16.852	S11°06'10"E	
CH52	12.31	S50°14'12"E	CH52	12.31	S50°14'12"E				
L52	15.90	S76°18'46"E	L52	15.90	S76°18'46"E				
CH53	9.35	S53°22'45"E	CH53	9.35	S53°22'45"E]			
L53	14.13	S30°26'45"E	L53	14.13	S30°26'45"E]			
CH54	12.20	S56°15'58"E	CH54	12.20	S56°15'58"E				

3/14/2019 Major Hill_Hyd

-L	JT1- STRI	EAM	ALIGNMENT DATA	-UT1- STREAM ALIGNMENT DATA			DATA	
STATION	LENGTH		NORTHING EASTING	STATION	LENGTH		NORTHING	EASTING
L70	16.85		S11°06'10"E	L89	33.24		S02°	51'33"W
CH71	7.46		S01°20'47"E	CH90	8.45		S13°	29'47"E
L71	19.09		S08°24'37"W	L90	44.25		S29°	51'07"E
CH72	7.29		S01°07'50"E	CH91	4.90		S20°2	27'25"E
L72	23.49		S10°40'17"E	L91	7.23		S11°	03'43"E
CH73	10.72		S10°15'53"W	CH92	6.84		S02°0	07'07"W
L73	6.20		S31°12'03"W	L92	23.86		S15°	17'58"W
CH74	9.04		S06°55'30"W	CH93	16.32		S17°:	39'52"E
L74	13.12		S17°21'04"E	L93	31.33		S50°	37'42"E
CH75	4.83		S08°05'10"E	CH94	9.33		S32°	30'26"E
L75	14.58		S01°10'43"W	L94	22.94		S14°:	23'09"E
CH76	3.58		S05°40'36"E	CH95	7.72		S29°	17'58"E
L76	39.00		S12°31'56"E	L95	36.23		S44°	12'47"E
CH77	6.84		S25°42'26"E	CH96	20.22		S16°	50'54"E
L77	21.68		S38°52'56"E	L96	21.54		S10°:	31'00"W
CH78	6.33		S51°04'05"E	CH97	7.26		S01°0	01'05"W
L78	18.66		S63°15'13"E	L97	36.52		S08°28'49"E	
CH79	6.64		S50°28'14"E	CH98	6.95		S17°:	34'12"E
L79	15.29		S37°41'16"E	L98	34.20		S26°	39'34"E
CH80	8.77		S20°40'50"E	CH99	7.96		S11°	16'55"E
L80	8.47		S03°40'25"E	L99	8.53		S04°0	05'44"W
CH81	11.42		S37°24'46"E	CH100	2.45		S10°2	29'40"W
L81	11.71		S63°29'42"E	L100	14.79		S16°	53'36"W
CH82	13.20		S26°37'56"E	CH101	7.57		S01°	29'40"E
L82	6.44		S10°13'49"W	L101	13.43		S19°	52'57"E
CH83	5.30		S03°42'45"E	CH102	2.83		S25°	17'54"E
L83	31.79		S17°39'19"E	L102	20.16		S30°4	42'51"E
CH84	12.56		S42°24'07"E	CH103	14.03		S02°	50'14"E
L84	7.90		S67°08'54"E	L103	25.31		S25°0	02'22"W
CH85	18.02		S25°17'08"E	CH104	8.23		S40°	57'59"W
L85	16.68		S16°34'38"W	L104	26.86		S56°	53'35"W
CH86	13.94		S11°06'28"E	CH105	78.67		S06°2	25'44"W
L86	3.89		S38°47'34"E	L105	51.052		S44°	02'08"E
CH87	12.21		S05°05'03"E	27+95.71		POT	772316.9272	1893822.256
L87	18.66		S28°37'28"W					
CH88	14.66		S00°37'47"E					
L88	19.20		S29°53'03"E					
CH89	8.46		S13°30'45"E					

DocuSign Envelope ID: 57AB4840-5904-4DBD-B50F-B29DC0807CF3

	C-1 PI Sta 0+11.66 $\Delta = 38' 28' 46.4''(LT)$ D = 716'11' 50.1'' L = 5.37' T = 2.79' R = 8.00' C-2 PI Sta 0+35.61 $\Delta = 68'01''06.9''(RT)$ D = 477' 27' 53.4'' L = 14.25' T = 8.10' R = 12.00' C-3 PI Sta 0+53.58 $\Delta = 24' 25' 18.9''(LT)$ D = 716'11' 50.1'' L = 3.41'' T = 1.73' R = 8.00' C-4 PI Sta 0+78.66 $\Delta = 125' 26' 27.1''(LT)$ D = 716'11' 50.1'' L = 17.51' T = 15.51'' R = 8.00' C-5 PI Sta 0+96.12 $\Delta = 49' 10' 21.4'''(RT)$	C-6 PI Sta 1+19.74 $\Delta = 64' 48' 22.0' (RT)$ D = 477' 27' 53.4" L = 13.57' T = 7.62' R = 12.00' C-7 PI Sta 1+34.47 $\Delta = 8' 55' 19.6" (LT)$ D = 477' 27' 53.4" L = 1.67' T = 0.94' R = 12.00' C-8 PI Sta 1+55.23 $\Delta = 24' 04' 54.3" (RT)$ D = 477' 27' 53.4" L = 5.04' T = 2.56' R = 12.00' C-9 PI Sta 1+72.20 $\Delta = 45' 02' 57.3" (LT)$ D = 477' 27' 53.4" L = 9.44' T = 4.98' R = 12.00' C-10 PI Sta 1+87.41 $\Delta = 16'' 33' 56.2" (RT)$	$\begin{array}{l} C-1I\\ PI Sta 2+03.89\\ \Delta = 25^{\circ} 37^{\prime} 04.9^{\prime} (LT)\\ D = 38i^{\circ} 58^{\prime} 18.7^{\prime}\\ L = 6.7i^{\prime}\\ T = 3.4i^{\prime}\\ R = 15.00^{\prime} \end{array}$		
3/4/2019 Ma_lor Hill_Hyd_AB_PSH_03E.dgn Jharvey	$D = 381^{\circ}58^{\circ}18.7^{"}$ $L = 12.87^{\circ}$ $T = 6.86^{\circ}$ $R = 15.00^{\circ}$	D = 477' 27' 53.4" L = 3.47' T = 1.75' R = 12.00'	25.12+005.24 25.12+005.24	POT Sta. 0+00.00 POT Sta. 0+00.00 PC Sta. 0+04.24	$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$

_
STATION
0+00
L1
CH1
L2
CH2
L3
CH3
L4
CH4
L5
CH5
CH8
L9
CH9
L10
CH10
L11
CH11
2+07.19

T2-STREAM ALIGNMENT DATA					
LENGTH		NORTHING	EASTING		
	POC	773,858.8047	1,893,594.7002		
8.87		S26°45'20"W			
5.27		S07°:	30'57"W		
13.28		S11°	43'26"E		
13.42		S22°	17'07"W		
10.08		S56°	17'41"W		
3.38		S44°	05'01"W		
7.90		S31°	52'22"W		
14.22		S30°50'52"E			
8.59		N86°25'55"E			
12.48		S68°58'55"E			
9.99		S44°:	23'44"E		
12.86		S11°	59'33"E		
7.84		S20°;	24'38"W		
1.87		S15°	56'58"W		
17.27		S11°;	29'19"W		
5.01		S23°	31'46"W		
9.50		S35°:	34'13"W		
9.19		S13°	02'44"W		
9.01		S09°:	28'44"E		
3.46		S01°	11'46"E		
11.35		S07°	05'12"W		
6.65		S05°	43'21"E		
	POT	773 692 0730	1 893 594 4306		

-L	JT3-STR	EAM	A
STATION	LENGTH		1
0+00		POC	7
L1	2.77		
CH1	10.07		
L2	38.86		
CH2	8.59		
L3	16.78		
CH3	9.81		
L4	13.50		
CH4	11.56		
L5	23.04		
CH5	20.56		
L6	8.11		
CH6	10.23		
L7	37.14		
CH7	10.08		
L8	29.36		
CH8	10.13		
L9	38.64		
CH9	22.51		
L10	14.91		
CH10	13.34		
L11	14.53		
CH11	5.85		
L12	12.00		
CH12	12.428		
L13	10.538		
CH13	13.329		
L14	26.511		
CH14	13.837		
L15	17.589		
CH15	20.154		
L16	34.269		
CH16	4.345		
L17	76.696		
CH17	17.04		
L18	34.906		
CH18	33.627		
L19	58.109		
CH19	19.797		
L20	91.347		

			C 1				CHEE	
				DATA- UT .3			JILL	3E
		PROJECT NAME	: MAJOR	HILL STREA	W AND W	ETLAND RE	L ESTORAT	ION SITE
				COUNTY:	ALAMAN	VCE	DATE:	2018
				SUNG	ATE D	905 JONES FF RALEIGH, NO TEL (919) 859- ENG FIRM LIC	GROU RANKLIN RC RTH CAROL 2243 RENSE NO. 1	P, P.A.
		- All and a second seco	<i>M</i>	Jot 1083 3/14		(1) (1) (1) (1) (1) (1) (1) (1)	NUL AR ALL ALL ALL ALL ALL ALL ALL ALL ALL	
				DATI	5:			
	דאחז	-		DOCH		OT CONSU		
				UNLES	S ALL S	GNATURE	S COMP	LETED
	1 802	0 11NG						
12,304.4473 \$16°	1,092	,295.5742						
516 4	4040 6	-						
535		-						
553-	27'53"E	-						
\$37*	53'13"E	-						
S22°	18'33"E	-						
S40°	09'33"E	Ē						
S58°	00'32"E	E						
S79°	11'00"E	-						
N79°38'33"E								
S60°;	23'01"E							
S20°	24'35"E							
\$39°03'05"F								
S57°4	41'35"E							
S76°	0.3'47"F	-						
N85°	34'02"							
\$75°	58'13"	-						
S73	3013 5	-						
507 ·	JU ZC E	-						
0210		-						
531*	24'06'V	v						
S24°	30'00"E	-						
S81°	00'06"E							
S59°	39'33"E	<u> </u>						
S38°	13'01"E	:						
S12°4	44'54"V	٧.						
S63°4	42'49"V	v						
S44°	14'52"V	V						
S24°4	46'55"V	V						
S47°2	23'16"V	V						
S69°	59'36"V	V						
	44'16"V	V						
S09°2	28'57"V	V						
S03°4	48'54"V	V						
S01°	51'08"E							
S24°	38'18"F							
<u></u>	25'28"F							
C-77 C20°	57'08"	-						
028 S	28'47"	-						
S12°	20'4/"E	-						
S22°	39'39"E	<u> </u>						
S32°	50'31"E	-						

-UT3- STREAM ALIGNMENT DATA						
STATION	TATION LENGTH		NORTHING	EASTING		
L20	91.35		S32°50'31"E			
C20	7.55		S28°58'41"E			
L21	55.96		S25°06'51"E			
C21	30.66		S69°17'40"E			
L22	54.83		N66°31'32"E			
C22	13.39		N48°48'18"E			
L23	19.23		N31°05'04"E			
C23	28.69		N71°46'28"E			
L24	24.03		S67°32'08"E			
C24	33.24		S84°47'59"E			
L25	36.41 N77°56'10"E					
C25	18.64 N59°11'30"E					
L26	32.05 N40°26'51"E					
C26	42.39 N87°24'44"F			'24'44"E		
L27	24.76		S45°37'24"E			
C27	27 17.26		S62°56'04"E			
L28	L28 23.32		S80°14'45"E			
C28	21.79		S50°33'54"E			
L29	17.27		S20°53'03"E			
C29	32.31 S68°07'37"E			07'37"E		
L30	61.81		N64°	N64°37'49"E		
C30	15.61	15.61 N80°14'45"E				
L31	40.74 S84°08'20"E			08'20"E		
C31	16.90 N87°11'05"E					
L32	L32 63.41 N78°30'29"E					

-UT3- STREAM ALIGNMENT DATA						
STATION	LENGTH		NORTHING EASTING			
L32	63.41		N78°30'29"E			
C32	41.09		S79°58'09"E			
L33	42.66		S58°26'47"E			
C33	13.22		S71°37'04"E			
L34	35.72		S84°47'22"E			
C34	22.31		N83°43'07"E			
L35	23.97		N72°13'36"E			
C35	27.42		S69°13'19"E			
L36	16.96		S30°40'15"E			
C36	46.23		S83°31'16"E			
L37	28.73		N43°37'42"E			
C37	9.54		N56°08'56"E			
L38	111.96		N68°40'09"E			
C38	14.73		N49°06'28"E			
L39	22.47		N29°32'46"E			
C39	17.18		N52°31'41"E			
L40	35.83		N75°30'35"E			
C40	11.34		N53°18'15"E			
L41	56.37		N31°05'55"E			
C41	37.17		N88°45'26"E			
L42	35.27		S33°35'04"E			
22+98.38		POT	772,360.8681 1,893,780.947			

PLANTING SCHEDULE

ALL PLANTS WERE PLANTED BY 12/31/18

Planted Bare Root Woody Vegetation **Major Hill Restoration Site**

Species	Piedmont/Low Mountain Alluvial Forest	Dry-Mesic Oak/Hickory Forest	Marsh Treatment Wetland	Streamside Assemblage	Total
Alnus serrulata			5	20	25
Asimina triloba				200	200
Betula nigra	100			200	300
Carpinus caroliniana		600			600
Cephalanthus occidentalis			5	20	25
Cercis canadensis		500			500
Cornus amomum	95		5	800	900
Diospyros virginiana		450			450
Fraxinus americana		100			100
Fraxinus pennsylvanica	150			750	900
Liriodendron tulipifera	75				75
Nyssa sylvatia		600			600
Platanus occidentalis	120			780	900
Quercus nigra	110	790		500	1,400
Quercus phellos	100	700		400	1,200
Salix nigra*				400*	400
Sambucus canadensis			11	14	25
TOTALS	750	3,740	26	4,084	8,600

*Live stakes of *Salix nigra* were planted; all other planted species were planted as bare root plants.

(PLANTING SCHEDULE PROVIDED BY AXIOM ENVIRONMENTAL)

Projec Reach Featu Date Crew	ct Name re	Major Hill - As-bui UT 1 (Sta 00+00 to Profile 9/19/18 Perkinson, Radecki	lt (2018) Profile 10+00)]		
s	tation	2018 As-built Survey Bed Elevation	Water Elevation	Station	As needed Bed Elevation	Water Elevation	Station	As needed Bed Elevation	Water Elevation	Station	As needed Bed Elevation	Water Elevation			
	0.0	513.35	513.55										IN TH	CARO	
	29.5	514.53	514.58										OFE	SSION	
	31.0	513.82	514.56											NY I	
	33.8	513.77	514.57										$=$ $\frac{1}{2}$ S		
	35.9 41.6	514.21 514 31	514.56 514.62											110/	
	42.8	514.20	514.60											+194 8:7 =	
	49.7	514.29	514.63										-0.10	ELO Q Z	
	52.2	514.47	514.74										-1, 1 S	URV	
	61.1	514.71	514.87										ASHL	FY RULLIN	
	65.2	514.27	514.85										//////		
	66.8	514.57	514.82												
	80.5	514.73	515.00												
	93.5	514.87	515.15												
	96.9 108 5	514.49	515.17												
	115.7	513.87	515.18												
	118.0	514.92	515.18												
	134.6	515.25	515.44										Anna Watan Saufa a S	As-bi	uilt
	136.4 139.4	514.46 514.60	515.44 515.44										Avg. Water Surface S Riffle Length	16 0.01	.95 5
	143.9	515.19	515.55										Avg. Riffle Slope	0.02	252
	163.6	515.99	516.10										Pool Length	13	3
	164.5	515.78	516.11												
	166.1 169 3	515.35	516.10 516.10												
	534 - 532 -								Major Hill, As	, UT 1 (Sta s-built Pro	file 2018	-00)			
	530 -														
S	520														
ary	526 -														
it	020														
art	524 -														\sim
1	021														
eet	522 -													\checkmark	
E	522														
[io]	520 -										-15-				
val	520														
Ele	518 -									\checkmark					
	510							\sim	\smile						
	516 -					\frown									
	510					· ~									
	514 -														
	514														
	512 -	-	1		1		1				1			1	
	(D	100		20	0	30	0	400		50	0	600	700	
											Distan	ce (feet)			
									—"Bed As-built	9/19/18"	<u> </u>	ater Surface As-l	built 9/19/18"		
							1	L							

As needed

Project Name Reach Feature	 Major Hill - As-bui UT 1 (Sta 10+00 to Profile 	lt (2018) Profil 17+00													
Date	9/19/18														
Crew	Perkinson, Radeck											-			
	2018														
Station	As-built Survey Bed Elevation	Water Elevation	Station	As needed Bed Elevation	Water Elevation	Station	As needed Bed Elevation	Water Elevation	Station	As needed Bed Elevation	Water Elevation	,,,,,,11	11111,		
990.8	531.12	531.16	~			~~~~~						IN TH	ARO		
1005.5	530.92	531.40										N'OK FE	ssion		
1007.8	530.39 530.29	531.39											N.Y.		
1017.7	531.59	531.63										E SE	EAL 📜 🗄		
1030.3	531.63	532.06										Ξ : _ L-4	194		
1031.3	531.20	532.07										- U.F.			
1041.0	531.72	532.19										I THIN SI	IRVE N		
1053.8	532.24	532.59										ASHI	BUDYN		
1067.2	532.09	532.88											$= \mathbf{X} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} Y$		
1072.4	531.87	532.89											1111		
1075.4	533.37	533.39													
1087.9	533.38 532.68	533.50 533.49													
1092.0	532.71	533.48													
1094.4	533.17	533.51													
1106.9	533.73	534.18 534.17													
1112.7	533.08	534.16												As-built	
1115.2	533.93	534.16										Avg. Water Surfa	ce Slope	0.0195	
1126.5 1137 9	534.33 534 59	534.56 534.79										Avg. Riffle Slope		16 0.0252	
1139.5	533.87	534.84										Pool Length		13	
1142.9	534.12	534.84													
1145.9	534.61	534.83													
548	1							Major Hill As	, UT 1 (Sta s-built Prot	n 10+00 to 17 file 2018	+00)				
546															
544															
542	-														
it. 540															
dra 											\sim	~ ~			
l (feet								~							
vatio															
≝ 534			$\overline{}$	V											
532		V	·												
530															
528 1	000		1100)		1200			1300			1400		1500	
								"Dod As held	0/10/19"	Distan	ce (feet)				
								Deu As-Duilt	7/17/10		ater surface As-	Juni 9/19/10			

MAJOR HILL - ASBUILT (2018) PROFILE STATIONS - UT1 9/19/18

	2018 2018			2018			2018					
	As-built Sur	rvey		As-built Sur	rvey	As-built Survey			As-built Su	rvey		
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	
0.0	513.35	513.55	297.2	516.52	517.53	582.1	522.18	522.62	863.6	527.60	527.84	
15.1	514.20	514.32	299.4	517.88	517.95	594.2	522.70	522.96	868.6	527.00	527.83	
29.5	514.53	514.58	314.9	517.78	517.98	597.3	522.13	522.99	872.5	526.81	527.86	
31.0	513.82	514.56	318.1	517.50	517.99	604.0	522.19	522.98	874.7	526.95	527.84	
33.8	513.77	514.57	326.7	517.40	517.99	607.8	522.85	523.18	878.9	527.65	527.94	
35.9	514.21	514.56	332.6	518.01	518.16	625.6	523.30	523.64	886.9	528.03	528.20	
41.6	514.31	514.62	352.9	518.43	518.61	628.8	522.80	523.63	890.4	527.45	528.18	
42.8	514.20	514.60	358.7	517.65	518.63	635.8	522.81	523.63	892.8	527.22	528.17	
49.7	514.29	514.63	365.6	517.54	518.62	639.1	523.36	523.68	895.8	528.08	528.18	
52.2	514.47	514.74	377.1	518.10	518.60	648.4	523.54	523.91	910.7	528.17	528.55	
61.1	514.71	514.87	378.6	519.04	519.04	655.8	522.93	523.88	916.7	527.43	528.52	
62.2	514.27	514.87	392.4	518.82	519.11	662.0	522.55	523.92	925.0	527.35	528.56	
65.2	514.28	514.85	404.7	518.96	519.18	667.4	522.71	523.91	926.9	528.97	529.01	
66.8	514.57	514.82	410.5	518.35	519.21	671.0	524.10	524.13	939.9	528.81	529.09	
80.5	514.73	515.00	415.5	518.48	519.22	691.1	524.57	524.67	941.7	528.22	529.10	
93.5	514.87	515.15	419.3	519.11	519.31	698.8	523.58	524.64	945.7	527.91	529.10	
96.9	514.49	515.17	434.7	519.67	519.98	707.5	523.47	524.66	947.1	529.53	529.59	
108.5	513.95	515.16	439.3	518.83	519.96	712.2	524.28	524.92	957.8	529.52	529.82	3
115.7	513.87	515.18	447.7	518.63	519.97	729.9	524.92	524.99	959.6	529.21	529.83	
118.0	514.92	515.18	448.8	520.37	520.37	732.0	524.31	525.02	965.8	529.22	529.87	
134.6	515.25	515.44	459.1	520.32	520.70	738.2	524.22	525.02	967.5	530.27	530.29	
136.4	514.46	515.44	462.1	520.52	520.82	743.2	524.09	525.00	977.5	530.01	530.39	
139.4	514.60	515.44	465.6	519.72	520.78	746.0	525.32	525.34	981.5	529.41	530.42	
143.9	515.19	515.55	473.2	520.02	520.75	763.3	525.26	525.49	989.8	529.24	530.40	
163.6	515.99	516.10	477.0	520.69	520.84	769.9	525.67	525.83	990.8	531.12	531.16	
164.5	515.78	516.11	491.2	520.98	521.30	771.3	525.08	525.87	1005.5	530.92	531.40	
166.1	515.35	516.10	493.4	520.56	521.30	773.7	525.67	525.96	1007.8	530.39	531.40	
169.3	515.43	516.10	499.8	520.69	521.34	785.6	526.11	526.31	1013.6	530.29	531.39	
173.1	516.08	516.21	508.8	520.97	521.48	788.2	525.27	526.30	1017.7	531.59	531.63	
187.3	516.30	516.63	510.0	521.78	521.82	793.6	525.40	526.30	1030.3	531.63	532.06	
191.4	515.63	516.62	515.4	521.04	521.84	795.3	526.32	526.36	1031.3	531.20	532.07	
199.6	515.65	516.63	522.5	520.91	521.84	802.9	526.17	526.39	1036.7	531.04	532.05	
203.8	515.68	516.63	529.2	520.82	521.82	807.5	525.34	526.38	1041.0	531.72	532.19	
207.3	516.31	516.63	532.2	521.61	521.95	813.3	526.61	526.62	1053.8	532.24	532.59	
221.2	516.71	516.79	542.5	522.06	522.28	818.2	526.48	526.67	1067.2	532.69	532.88	
241.4	516.78	517.10	547.8	521.51	522.30	820.4	525.81	526.69	1069.1	532.32	532.88	
247.7	515.86	517.09	555.5	521.47	522.27	824.7	525.97	526.68	1072.4	531.87	532.89	
255.0	515.75	517.09	560.8	521.55	522.29	830.7	527.15	527.19	1075.4	533.37	533.39	
260.7	515.95	517.09	563.2	522.00	522.29	840.1	527.31	527.54	1087.9	533.38	533.50	
269.4	516.72	517.09	571.5	522.14	522.45	842.6	526.36	527.56	1089.1	532.68	533.49	
291.4	517.18	517.51	573.9	521.75	522.47	849.1	526.34	527.57	1092.0	532.71	533.48	
293.7	516.69	517.53	580.6	521.96	522.46	854.6	527.46	527.60	1094.4	533.17	533.51	

MAJOR HILL - ASBUILT (2018) PROFILE STATIONS - UT1 9/19/18

2018 As-built Survey			2018 As-built Sur	·vey	2018 As-built Survey			
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
1106.9	533.73	534.18	1364.6	538.69	539.00	1638.8	544.59	545.63
1108.5	532.88	534.17	1366.6	538.38	539.01	1643.4	544.71	545.65
1112.7	533.08	534.16	1369.8	538.28	539.02	1646.7	545.44	545.66
1115.2	533.93	534.16	1373.4	538.72	539.01	1673.7	546.13	546.54
1126.5	534.33	534.56	1386.4	539.22	539.55			
1137.9	534.59	534.79	1387.9	539.16	539.56			
1139.5	533.87	534.84	1393.2	539.05	539.57			
1142.9	534.12	534.84	1396.1	539.24	539.60			
1145.9	534.61	534.83	1410.1	539.72	539.96			
1157.0	535.08	535.27	1411.6	539.38	539.98			
1159.1	534.43	535.29	1417.2	539.50	540.00			
1165.2	534.49	535.29	1420.7	539.83	540.01			
1168.4	535.17	535.29	1439.6	540.39	540.64			
1178.9	535.51	535.65	1442.1	539.82	540.63			
1180.5	535.00	535.67	1446.0	539.54	540.65			
1183.2	534.98	535.67	1452.9	540.00	540.64			
1185.0	535.48	535.68	1460.8	540.38	540.64			
1197.3	535.67	536.02	1473.7	541.00	541.47			
1199.2	535.22	536.03	1483.5	541.44	541.81			
1202.2	535.29	536.03	1486.5	540.97	541.83			
1204.9	535.96	536.01	1490.3	541.07	541.83			
1216.2	536.25	536.40	1493.9	541.69	541.96			
1218.6	535.84	536.41	1504.4	541.99	542.20			
1225.2	535.65	536.40	1512.7	542.26	542.43			
1228.8	536.32	536.47	1514.9	541.84	542.42			
1238.5	536.51	536.82	1519.5	541.70	542.42			
1240.7	535.96	536.77	1522.8	542.19	542.44			
1245.5	535.91	536.80	1544.5	542.79	542.86			
1250.1	536.71	536.81	1569.7	543.26	543.45			
1265.9	537.06	537.45	1574.3	542.77	543.47			
1267.5	536.66	537.42	1580.5	542.47	543.46			
1273.9	536.74	537.42	1581.3	543.85	543.89			
1279.3	537.22	537.43	1594.0	543.75	544.31			
1299.8	537.65	537.83	1596.5	543.58	544.28			
1319.1	537.97	538.20	1604.2	543.32	544.26			
1321.2	537.52	538.31	1605.2	544.78	544.80			
1324.4	537.63	538.22	1609.6	544.44	544.79			
1327.5	538.10	538.27	1612.6	544.01	544.79			
1339.8	538.48	538.75	1615.2	544.01	544.77			
1341.9	538.08	538.74	1617.5	544.63	545.00			
1351.1	538.20	538.78	1624.5	545.12	545.31			
1353.8	538.49	538.80	1635.8	545.16	545.68			

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 1, Riffle
Feature	Riffle
Date:	9/19/2018
Field Crew:	Perkinson, Radecki

Station	Elevation	
0.0	516.88	
3.2	516.76	
5.5	516.79	
7.7	516.83	
8.6	516.76	
9.4	516.45	
9.9	516.30	
10.5	516.00	
11.3	515.65	
12.2	515.64	
13.2	515.57	
13.6	515.74	
14.0	515.79	
14.6	515.89	
15.4	515.82	
16.6	516.12	
17.8	516.44	
19.1	516.58	
21.3	516.85	
23.0	516.99	
24.5	517.05	
26.0	517.3	

,	
SUMMADY DATA	
Bankfull Elevation:	516.8
Bankfull Cross-Sectional Area:	7.5
Bankfull Width:	11.8
Flood Prone Area Elevation:	518.0
Flood Prone Width:	40.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.2
Mean Depth at Bankfull:	0.6
W / D Ratio:	18.6
Entrenchment Ratio:	3.4
Bank Height Ratio:	1.0

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 2, Riffle
Feature	Riffle
Date:	9/19/2018
Field Crew:	Perkinson, Radecki

Station	Elevation	
0.0	518.12	
2.1	517.86	
4.2	517.58	
6.1	517.44	
7.5	517.25	
8.9	517.12	
9.9	516.88	
10.4	516.75	
11.1	516.76	
11.7	516.55	
12.6	516.61	
13.6	516.54	
14.5	516.65	
15.5	516.84	
16.7	517.20	
17.9	517.34	
19.9	517.43	
22.1	517.69	
24.2	517.80	

SUMMARY DATA	
Bankfull Elevation:	517.2
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	8.6
Flood Prone Area Elevation:	517.9
Flood Prone Width:	22.0
Max Depth at Bankfull:	0.7
Low Bank Height:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	21.1
Entrenchment Ratio:	2.6
Bank Height Ratio:	1.0

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 3, Pool
Feature	Pool
Date:	9/19/2018
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	520.9
2.2	520.6
4.3	520.4
5.6	520.3
6.8	519.8
7.6	519.2
8.5	518.7
9.2	518.4
9.8	518.6
10.2	518.6
10.8	518.8
11.4	519.1
12.2	519.6
13.1	519.7
15.4	519.9
16.8	520.0
18.8	520.2
20.0	520.3
22.1	520.3

SUMMARY DATA	
Bankfull Elevation:	520.2
Bankfull Cross-Sectional Area:	8.4
Bankfull Width:	13.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.7
Low Bank Height:	1.7
Mean Depth at Bankfull:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 4, Riffle
Feature	Riffle
Date:	9/19/2018
Field Crew:	Perkinson, Radecki

Station	Elevation	
0.0	520.94	
2.6	521.17	
4.8	520.89	
6.3	520.35	
7.2	520.17	
7.9	520.14	
8.4	519.67	
9.5	519.69	
10.1	519.76	
11.0	519.75	
12.0	519.78	
12.7	519.86	
13.5	519.78	
14.5	520.09	
15.4	520.39	
16.2	520.58	
17.6	520.57	
18.9	520.60	
20.9	520.54	
22.2	520.66	

inison, rudeeki	
SUMMARY DATA	
Bankfull Elevation:	520.5
Bankfull Cross-Sectional Area:	5.8
Bankfull Width:	10.3
Flood Prone Area Elevation:	521.4
Flood Prone Width:	40.0
Max Depth at Bankfull:	0.9
Low Bank Height:	0.9
Mean Depth at Bankfull:	0.6
W / D Ratio:	18.3
Entrenchment Ratio:	3.9
Bank Height Ratio	1.0

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 5, Riffle
Feature	Riffle
Date:	9/19/2018
Field Crew:	Perkinson, Radecki

Station	Elevation	
0.0	525.23	
2.4	524.81	
4.7	524.47	
5.8	524.41	
6.5	524.04	
7.4	523.73	
8.0	523.41	
8.7	523.32	
9.7	523.33	
10.5	523.40	
11.2	523.53	
12.4	523.80	
13.1	523.74	
14.1	523.91	
15.9	524.23	
18.1	524.45	
19.9	524.53	

SUMMARY DATA	
Bankfull Elevation:	524.4
Bankfull Cross-Sectional Area:	7.1
Bankfull Width:	11.8
Flood Prone Area Elevation:	525.5
Flood Prone Width:	40.0
Max Depth at Bankfull:	1.1
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.6
W / D Ratio:	19.6
Entrenchment Ratio:	3.4
Bank Height Ratio:	1.0

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 6, Pool
Feature	Pool
Date:	9/19/2018
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	525.9
1.7	525.6
3.4	525.5
4.6	525.4
5.9	525.0
6.8	524.7
7.6	524.2
8.1	522.9
9.2	522.8
9.8	522.8
10.5	522.8
11.2	523.1
11.6	523.8
12.6	523.9
13.6	524.4
15.1	524.6
16.8	525.0
18.7	525.0
21.6	524.9

SUMMARY DATA	
Bankfull Elevation:	524.8
Bankfull Cross-Sectional Area:	9.1
Bankfull Width:	8.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.0
Low Bank Height:	2.0
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 7, Pool
Feature	Pool
Date:	9/19/2018
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	529.8
2.1	529.9
4.7	529.9
6.7	529.8
8.3	529.0
8.8	528.1
9.6	527.4
10.7	527.0
11.4	527.0
12.2	527.0
12.7	527.3
13.1	527.0
13.5	528.7
14.1	529.3
15.0	529.7
16.4	529.5
18.4	529.7
19.8	530.0
21.7	530.3

,	
SUMMARY DATA	
Bankfull Elevation:	529.5
Bankfull Cross-Sectional Area:	11.7
Bankfull Width:	7.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.5
Low Bank Height:	2.5
Mean Depth at Bankfull:	1.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 8, Riffle
Feature	Riffle
Date:	9/19/2018
Field Crew:	Perkinson, Radecki

Elevation	
530.31	
530.17	
529.87	
529.59	
529.06	
529.24	
528.86	
528.81	
528.91	
528.80	
528.95	
529.38	
529.61	
530.11	
530.31	
530.33	
530.13	
530.30	
	Elevation 530.31 530.17 529.87 529.59 529.06 529.24 528.86 528.81 528.91 528.80 528.95 529.38 529.61 530.11 530.31 530.33 530.13 530.30

Rhison, Huddeki	
SUMMARY DATA	
Bankfull Elevation:	529.6
Bankfull Cross-Sectional Area:	3.0
Bankfull Width:	6.0
Flood Prone Area Elevation:	530.4
Flood Prone Width:	23.0
Max Depth at Bankfull:	0.8
Low Bank Height:	0.8
Mean Depth at Bankfull:	0.5
W / D Ratio:	12.0
Entrenchment Ratio:	3.8
Bank Height Ratio:	1.0

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 9, Pool
Feature	Pool
Date:	9/19/2018
Field Crew:	Perkinson, Radecki

Station	Elevation
0.0	539.4
2.9	539.3
4.9	539.5
6.3	539.2
7.6	538.8
8.3	538.5
8.9	538.4
9.6	538.0
10.2	537.9
10.7	538.0
11.4	538.4
12.1	538.6
12.5	538.8
13.2	539.2
13.7	539.4
14.5	539.4
16.2	539.2
19.0	539.2
20.5	539.4

SUMMAKY DATA	
Bankfull Elevation:	539.2
Bankfull Cross-Sectional Area:	4.9
Bankfull Width:	7.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.3
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 10, Riffle
Feature	Riffle
Date:	9/19/2018
Field Crew:	Perkinson, Radecki

Station	Elevation	
0.0	541.29	
2.4	541.20	
6.2	541.14	
7.2	540.91	
8.0	540.60	
8.5	540.35	
9.1	540.30	
10.0	540.33	
10.5	540.46	
11.3	540.50	
12.0	540.55	
12.7	540.61	
13.2	540.80	
14.2	540.76	
15.7	540.71	
17.9	540.96	
19.1	541.02	
20.4	541.05	

SUMMARY DATA	
Bankfull Elevation:	541.0
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	10.9
Flood Prone Area Elevation:	541.7
Flood Prone Width:	40.0
Max Depth at Bankfull:	0.7
Low Bank Height:	0.7
Mean Depth at Bankfull:	0.3
W / D Ratio:	33.9
Entrenchment Ratio:	3.7
Bank Height Ratio:	1.0

Appendix H. Riparian Buffer Asbuilt Baseline Report

Appendices Restoration Systems, LLC March 2019

RIPARIAN BUFFER ASBUILT BASELINE REPORT MAJOR HILL MITIGATION SITE Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

Cape Fear River Basin – Haw River Arm Cataloging Unit 03030002

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

March 2019

This project with conforms with theNorth Carolina consolidated buffer mitigation rule 15A NCAC 02B .0295, effective November 1, 2015 and the Jordan Lake Buffer Protection Rule (15A NCAC 02B .0267 & 15A NCAC 02B .0268)

Table of Contents

1.0	MITIG	ATION PROJECT SUMMARY	2
2.0	REGUI	LATORY CONSIDERATIONS	3
3.0	RIPAR	IAN RESTORATION, ENHANCEMENT, & PRESERVATION PLAN	4
3	8.1 R	RIPARIAN AREA RESTORATION ACTIVITIES	3
3	8.2 R	RIPARIAN BUFFER ENHANCEMENT VIA CATTLE EXCLUSION ACTIVITIES	5
3	8.3 R	RIPARIAN BUFFER PRESERVATION ACTIVITIES	6
3	8.4 N	IARSH TREATMENT AREA	6
4.0	ANNUA	AL MONITORING	6
Ζ	.1 Moni	TORING	6
Z	.2 Perfo	DRMANCE STANDARDS	7
2	.3 Resul	LTS AND DISCUSSION	7
Z	4.4 Main	TENANCE AND MANAGEMENT	7
5.0	REFER	RENCES	9

Tables

Buffer Project Attributes	2
Buffer Project Areas and Assets	4
Planted Bare Root Woody Vegetation	5
Riparian Buffer Monitoring	6
Riparian Buffer Vegetation Totals	7
Total Stems by Plot and Species	8
	Buffer Project Attributes Buffer Project Areas and Assets Planted Bare Root Woody Vegetation Riparian Buffer Monitoring Riparian Buffer Vegetation Totals Total Stems by Plot and Species

Attachments

Attachment 1

- Figure A. Riparian Buffer Asset Map
- Figure B. Riparian Buffer Planting Map

Attachment 2

Riparian Buffer Sealed Survey

1.0 MITIGATION PROJECT SUMMARY

The Major Hill Stream and Wetland Mitigation Site (hereafter referred to as the "Site") encompasses 16.7 acres along warm water, unnamed tributaries to Pine Hill Branch. The Site is located approximately 3.5 miles southeast of Snow Camp and 6 miles north of Silk Hope in southern Alamance County near the Chatham County line. Project attributes are included in the following table.

Table 1.	Buffer	Project	Attributes
----------	--------	---------	------------

Project Name	Major Hill
Hydrologic Unit Code	3030002050050
River Basin	Cape Fear
Geographic Location (Lat, Long)	35.873206, -79.360906
Site Protection Instrument (DB, PG)	(2789, 896), (2514, 756), (3143, 270), (3150, 920)
Total Credits (BMU)	402,837
Types of Credits	Riparian Buffer Restoration, Enhancement, & Preservation
Mitigation Plan Date	Apr-18
Initial Planting Date	Dec 2018-Jan 2019
Baseline Report Date	Mar-19
MY1 Report Date	
MY2 Report Date	
MY3 Report Date	
MY4 Report Date	
MY5 Report Date	

The Site drainage area is primarily composed of pasture, forest, agriculture land, and sparse residential property. Impervious surfaces account for less than five percent of the upstream land surface.

Prior to construction, Site land use consisted of pasture, hayfields, disturbed forest, and agricultural land used for livestock grazing and hay production. Livestock had unrestricted access to Site streams, and stream banks were eroded vertically and laterally and received extensive sediment and nutrient inputs. Riparian zones in the upper reaches of UT 1 were primarily composed of herbaceous vegetation that was sparse and disturbed due to livestock grazing, bush hogging, and regular land-management activities. The downstream reaches of UT 1 and all of UT 3 were primarily wooded with livestock disturbance to stream channels. UT 2 was the lone tributary not subject to continuous, unrestricted livestock access. Riparian areas immediately adjacent to UT 2 were forested with a fence to protect this area from livestock access.

The riparian areas were restored in concurrence with the Major Hill Stream and Wetland Mitigation Site (NC DMS Project ID 10015, SAW-2017-01472) and involved restoring riparian buffers adjacent to restored streams to help reduce non-point source contaminant discharges to downstream waters in the Haw River sub-watershed of Jordan Lake. All riparian areas were assessed by DWR (Katie Merritt and Sue Homewood) during an onsite visit February 20th, 2018 to determine viability for buffer mitigation.

The Site is protected with a permanent conservation easement. Riparian restoration, enhancement, and preservation area widths adjacent to restored streams extend out to a maximum of 200 feet from the top of stream banks with a minimum width of 50 from the top of banks. Riparian buffer enhancement and preservation credits generated on this Site are allowed pursuant to 15A NCAC 02B .0295 (o). No riparian restoration areas that are less than 20 feet wide from Top of Banks are used to generate riparian buffer credit.

Riparian buffer mitigation credit was not generated in areas that are generating wetland mitigation credit.

2.0 REGULATORY CONSIDERATIONS

Credit determination for this Site follows the North Carolina consolidated buffer mitigation rule 15A NCAC 02B .0295, effective November 1, 2015 (see Table 2 on the following page and Figure A, Attachment 1).

3.0 RIPARIAN RESTORATION, ENHANCEMENT, & PRESERVATION PLAN

This Site was also proposed as a stream and wetland mitigation project; therefore, restoration of riparian areas was accomplished through the goals and methods outlined by the *Major Hill Stream and Wetland Mitigation Plan*. All applicable federal, state, and local documentation, permits, and/or authorizations were acquired as part of implementing the above-mentioned mitigation plan.

Primary goals focused on 1) improving water quality, 2) enhancing flood attenuation and hydrology, 3) improving aquatic resources, and 4) restoring riparian habitat. Completed mitigation provides floodplain connectivity, floodplain resistance, stream stability, sediment transport, surface and subsurface storage and retention, in-stream habitat, riparian habitat and structure, thermal regulation, floodplain biogeochemical processing, and pollutant filtration as well as remove sources of pollutants. The riparian area will be restored through the revegetation of native plant communities.

3.1 Riparian Area Restoration Activities

3.1.1 Site Preparation

Soil grading occurred during stream restoration activities. Topsoils were stockpiled during construction activities and spread on the soil surface once critical subgrade was established. The replaced topsoil will serve as a viable growing medium for community restoration to provide nutrients and aid in the survival of planted species.

Farm Pond Removal

To complete the stream and wetland restoration activities and subsequent riparian buffer restoration, the removal of a small farm pond, ~0.58 acres occurred. Stream, wetland and riparian area restoration within the abandoned pond included 1) notching the dam to dewater; 2) removal of the dam to the elevation of the adjacent floodplain; 3) excavating sediment that is unsuitable for channel bank construction; 4) backfilling areas of sediment removed with soil suitable for channel construction (as necessary); 5) excavation of the design channel, 6) stabilization of the channel with coir matting, seed, and mulch; and 7) installation of structures.

Table 2. Buffer Project Areas and Assets

RIPARIAN	RIPARIAN BUFFER (15A NCAC 02B.0295)													
Location	Jurisdictional Streams	Restoration Type	Reach ID/ Component	Buffer Width (ft)	Creditable Area (sf)*	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)	Convertible to Nutrient Offset (Yes or No)	Nutrient Offset: N (lbs)	Nutrient Offset: P (lbs)		
Rural	Subject & Nonsubject	Restoration	1	0-100	213,290	1	100%	1.00000	213,290.000	Yes	11129.775	716.842		
Rural	Subject & Nonsubject	Restoration	2	101-200	40,976	1	33%	3.03030	13,522.094	Yes	2138.186	137.715		
Rural	Subject	Enhancement	3	0-100	341,433	2	100%	2.00000	170,716.500	No	0.000	0.000		
				SUBTOTALS	595,699				397,528.594		13,267.960	854.558		

			ELIGIBLE PRESERVATIO	ON AREA	198,566				
Location	Jurisdictional Streams	Restoration Type	Reach ID/ Component	Buffer Width (ft)	Creditable Area (sf)*	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)
Rural	Nonsubject	Preservation	4	0-100	25,614	5	100%	5.00000	5,122.800
Rural	Nonsubject	Preservation	5	101-200	2,814	5	33%	15.15152	185.724
				SUBTOTALS	28,428				5,308.524
				TOTALS	624,127				402,837.117

*Area eligible for preservation may be no more than 25% of total area, where total area is back-calculated with the equation R+E/0.75. *Buffers must be at minimum 20' wide for riparian buffer credit, buffers must be 50' wide for nutrient offset credit

*When preservation areas exceed the total eligible preservation area, select the areas with the best credit ratios as the creditable areas.

3.1.2 Planting

Bare-root seedlings within the Piedmont Alluvial and Dry-Mesic Oak-Hickory Forests will be planted at a density of approximately 680 stems per acre on 8-foot centers. Species in the stream-side assemblage and Marsh Wetland Treatment Areas were planted at a density of approximately 2720 stems per acre on 4-foot centers. The following table summarizes planted bare root stems within the Site.

Species	Piedmont/Low Mountain Alluvial Forest	Dry-Mesic Oak/Hickory Forest	Marsh Treatment Wetland	Streamside Assemblage	Total
Alnus serrulata			5	20	25
Asimina triloba				200	200
Betula nigra	100			200	300
Carpinus caroliniana		600			600
Cephalanthus occidentalis			5	20	25
Cercis canadensis		500			500
Cornus amomum	95		5	800	900
Diospyros virginiana		450			450
Fraxinus americana		100			100
Fraxinus pennsylvanica	150			750	900
Liriodendron tulipifera	75				75
Nyssa sylvatia		600			600
Platanus occidentalis	120			780	900
Quercus nigra	110	790		500	1,400
Quercus phellos	100	700		400	1,200
Salix nigra*				400*	400
Sambucus canadensis			11	14	25
TOTALS	750	3,740	26	4,084	8,600

Table 3.	Planted	Bare	Root	Woody	Vegetation
I UNIC CI	I Iunicou	Duiv	1000	,, oou,	, cgctution

*Live stakes of *Salix nigra* were planted; all other planted species were planted as bare root plants.

3.2 Riparian Buffer Enhancement via Cattle Exclusion Activities

Riparian buffer enhancement included permanently protecting existing riparian buffer from livestock via exclusionary fencing, cutting, clearing, filling, grading, and any similar activities that would affect the functionality of the riparian buffer. These areas are defined primarily as disturbed mixed hardwoods. Buffer credits sought in the enhancement area are allowed under 15A NCAC 02B .0295 (o)(6). The enhancement area extends a maximum of 200 feet from the top of the bank with a minimum width of 20 from top of banks.

A small portion of UT-3 is generating riparian buffer enhancement credit from only one side of the stream. Prior to construction, cattle had access to the entire area; however, the only access point was from the pasture on the northern side of the stream, the Parcel owned by Mr. Lamm.

Once fencing was installed to prevent cattle access from Mr. Lamm's parcel to the stream, cattle will no longer be able to access the south side of the stream. This action will result in compliance with 15A NCAC 02B .0295 (o)(6), which states that the permanent exclusion of grazing livestock must be done such that the livestock are fenced out of the stream and its adjacent buffer. The southern parcel, which is not apart of the conservation easement, is owned by the Caviness family and is a single-family home. Cattle will not be grazing within their parcel post construction.

3.3 Riparian Buffer Preservation Activities

Riparian buffer preservation includes permanently protecting existing riparian buffers from cutting, clearing, filling, grading, and any similar activities that would affect the functionality of the riparian buffer. Areas specified for Preservation at the Site, in accordance with 15A NCAC 02B .0295, are defined primarily as mixed hardwoods, with the number of high-value species above 200 per acre. They are areas where livestock were fenced out prior to construction with little or no historical livestock access.

3.4 Marsh Treatment Area

A marsh treatment area was constructed to intercept surface waters draining through agricultural areas before discharging into UT1. The marsh treatment area is excluded from credit calculations.

4.0 ANNUAL MONITORING

4.1 Monitoring

Eight vegetation monitoring plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008); this covers 3.4% of the area generating riparian buffer restoration credit. Vegetation monitoring will occur annually in the fall (between September and November), prior to the loss of leaves for a period of five monitoring years following planting. Parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph. In addition, inspections for beaver and other potential nuisance species will occur throughout the course of the monitoring period.

The following table outlines riparian buffer monitoring for this project; monitoring parameter descriptions follow.

Required	Parameter	Quantity	Frequency	Notes
Yes	Vegetation	Eight (8) plots located across all restored buffer zones.	Annual	Vegetation will be monitored for five years or until performance standards are met. Visual monitoring of the site will be done all five years. Analysis of vegetation will be recorded using level 2 CVS Monitoring protocol.
Yes	Project Boundary	NA	Annual	Locations of fence damage, vegetation damage, boundary encroachments, etc. will be mapped.

Table 4. Riparian Buffer Monitoring

4.2 Performance Standards

Performance standards were established to verify that the vegetation component supports community elements necessary for forest development and the maintenance of diffuse flow through the riparian buffer in accordance with North Carolina Division of Water Resources Administrative Code 15A NCAC 02B.0295 (Mitigation Program Requirements for Protection and Maintenance of Riparian Buffers). Performance standards are dependent upon the density and growth of at least four native hardwood tree species where no one species is greater than 50% of the stems. After five years of monitoring, an average density of 260 woody stems per acre, including planted shrubs (silky dogwood and blueberry), must be surviving, and diffuse flow maintained. 15A NCAC 02b .0295 (2)(E) dictates that monitoring for planted stems would also include the health of planted stems. Level 2 CVS monitoring protocol requires the vigor, a determinant of health, of a monitored stem be recorded. If requested, RS will make available during the monitoring years, planted stem health, e.g. vigor.

4.3 Results and Discussion

Based on the number of stems counted, average densities were measured at 617 planted hardwood tree stems per acre (excluding livestakes, shrubs, pines, and vines) at asbuilt (MY0). In addition, each individual plot met success criteria. The following Table 5 summarizes riparian buffer success criteria and Table 6 summarizes all vegetation data by species, plot, and year. Vegetation plot photographs are included in Appendix B of the *Major Hill Stream and Wetland Mitigation Site Asbuilt Baseline Monitoring Report*.

Table 5. Alparian burlet vegetation rotais											
Plot #	Riparian Buffer Stems ¹ /Acre	Success Criteria Met?									
1	405	Yes									
2	486	Yes									
3	567	Yes									
4	850	Yes									
5	647	Yes									
6	647	Yes									
7	567	Yes									
8	769	Yes									
Total Riparian Buffer Stems/Acre	617	Yes									

Table 5. Riparian Buffer Vegetation Totals

1-Buffer Stems include native planted hardwood trees. Does not include shrubs, pines, or vines.

4.4 Maintenance and Management

No maintenance or management activities are currently planned for the coming year, and no remedial action activities are necessary at this time.

Table 6. Total Stems by Plot and Species EEP Project Code 17.009. Project Name: Major Hill

													Curre	nt Plot I	Data (N	YO 201	9)										Ann	ual Me	ans
			17.0	009-01	-0001	17.0	009-01	-0002	17.	009-01	-0003	17	.009-01	-0004	17	.009-01	-0005	17	.009-0 2	L-0006	17.	009-01 ⁻	-0007	17.	009-01-	-0008	M	YO (201	.9)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoL	S P-all	Т	PnoL	S P-all	Т	PnoL	S P-all	Т	PnoLS	6 P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Asimina triloba	pawpaw	Tree				1		1 1	. 3	3 3	3 3	3	1	1	1						1	1 :	1 1	. 1	. 1	1 1	. 7	7	7
Betula nigra	river birch	Tree											2	2	2	4 4	1 4		1	1 1	. 1	1 1	1 1	. 1	. 1	1 1	9	9	9
Carpinus caroliniana	American hornbeam	Tree	1		1 1				2	2 2	2 2	2							2	2 2							5	5	5
Cercis canadensis	eastern redbud	Tree				1	·	L 1	. 3	3 3	3 3	3	4	4 4	4	1 :	1 1		1	1 1	. 1	1 :	1 1	. 3	3	3 3	14	14	14
Cornus amomum	silky dogwood	Shrub				1	<u>-</u>	L 1	-																		1	1	1
Diospyros virginiana	common persimmon	Tree											2	2 2	2				1	1 1				2	2	2 2	5	5	5
Fraxinus	ash	Tree																						1	. 1	1 1	1	1	1
Fraxinus americana	white ash	Tree																	3	3 3				2	2	2 2	5	5	5
Fraxinus pennsylvanica	green ash	Tree											2	2	2	1 :	1 1										3	3	3
Liriodendron tulipifera	tuliptree	Tree	4	. 4	4 4	1		1 1	-																		5	5	5
Nyssa sylvatica	blackgum	Tree	2	2	2 2	2	Ĩ	2 2	2 2	2 2	2 2	2	1	1	1	1 :	1 1							2	2	2 2	10	10	10
Platanus occidentalis	American sycamore	Tree				2	2	2 2	2							1 :	1 1		3	3 3	1	1 :	1 1	-			7	7	7
Quercus	oak	Tree	3	3	3 3	1		1 1	. 1		L	1	3	3	3	4 4	1 4		3	3 3	ζ.	4 4	4 4	. 4	. 4	4 4	23	23	23
Quercus nigra	water oak	Tree				1		1 1	. 1		L	1	4	4 4	4	2 2	2 2		1	1 1	. 1	1 1	1 1				10	10	10
Quercus phellos	willow oak	Tree				3	3	3 3	3 2	2 2	2 2	2	2	2	2	2 2	2 2		1	1 1	. 5	5 5	5 5	3	3	3 3	18	18	18
Unknown		Shrub or Tree	1	-	1 1				1		L í	1									2	2 2	2 2	2	2 2	2 2	6	6	6
		Stem count	11	11	1 11	13	13	3 13	8 15	5 15	5 15	5 2	21 2	1 2	1 1	6 16	5 16	5 1	.6 1	.6 16	5 16	5 16	5 16	21	. 21	1 21	129	129	129
		size (ares)		1			1			1			1			1			1			1			1			8	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02	<u>)</u>		0.02			0.02			0.20	
		Species count	5	l L	5 5	9	9	9 9	8	8 8	8 8	8	9	9 9	9	8 8	8 8		9	9 9	8	8 8	8 8	10	10	0 10	16	16	16
	Stems per AC				2 445.2	526.1	526.2	L 526.1	607	607	7 607	7 849	. <mark>8</mark> 849.	8 849.	647.	5 647.5	647.5	647	.5 647	5 647.5	647.5	5 647.5	647.5	849.8	849.8	849.8	652.6	652.6	652.6

Color for Density

PnoLS = Planted excluding livestakes

Exceeds requirements by 10% Exceeds requirements, but by less than 10% P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

T includes natural recruits

5.0 REFERENCES

- Jordan Lake Water Supply Watershed Buffer Rules 15A NCAC 02B .0267, 15A NCAC 02B .0268, and 15A NCAC 02B .0295
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Level 1-2 Plot Version 4.2. Ecosystem Enhancement Program, North Carolina Department of Environment and Natural Resources.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.

ATTACHMENT 1

Figure A. Riparian Buffer Asset Map Figure B. Riparian Buffer Planting Map

Appendices Restoration Systems, LLC March 2019

ATTACHMENT 2

Riparian Buffer Sealed Survey

Appendices Restoration Systems, LLC March 2019

Table 2. Buffer Project Areas and Assets

RIPARIAN	I BUFFER (15A N	CAC 02B.0295)									lf Convei Nutrient	rted to Offset
Location	Jurisdictional Streams	Restoration Type	Reach ID/ Component	Buffer Width (ft)	Creditable Area (sf)*	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)	Convertible to Nutrient Offset (Yes or No)	Nutrient Offset: N (Ibs)	Nutrient Offset: P (Ibs)
Rural	Subject & Nonsubject	Restoration	1	0-100	213,290	1	100%	1.00000	213,290.000	Yes	11129.775	716.842
Rural	Subject & Nonsubject	Restoration	2	101-200	40,976	1	33%	3.03030	13,522.094	Yes	2138.186	137.715
Rural	Subject	Enhancement	3	0-100	341,433	2	100%	2.00000	170,716.500	No	0.000	0.000
				SUBTOTALS	595,699				397,528.594		13,267.960	854.558

			ELIGIBLE PRESERVATIO	ON AREA	198,566				
Location	Jurisdictional Streams	Restoration Type	Reach ID/ Component	Buffer Width (ft)	Creditable Area (sf)*	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)
Rural	Nonsubject	Preservation	4	0-100	25,614	5	100%	5.00000	5,122.800
Rural	Nonsubject	Preservation	5	101-200	2,814	5	33%	15.15152	185.724
				SUBTOTALS	28,428				5,308.524
				TOTALS	624,127	1			402,837,117

*Area eligible for preservation may be no more than 25% of total area, where total area is back-calculated with the equation R+E/0.75. *Buffers must be at minimum 20' wide for riparian buffer credit, buffers must be 50' wide for nutrient offset credit *When preservation areas exceed the total eligible preservation area, select the areas with the best credit ratios as the creditable areas.

(PROVIDED BY AXIOM ENVIRONMENTAL, INC)

REVISIONS: (03/15/19)

- 1 ALL BUFFER AREAS MEASURED IN SQ. FT.
- 2 CONSERVATION PLAT REMOVED & PAGES RENUMBERED

CVS PLOTS COORDINATE TABLE (COORDINATE AT THE PLOT

773384.9763 1893626.6861

773487.7063 1893589.7412

773864.2494 1893433.7282

773898.3702 1893316.6978

774178.0237 1893229.9873

774280.3598 1893100.6160

EASTING

1893526.7350

1893143.3643

NORTHING

773727.6476

774560.4220

CVS PLOT

4

- 3 REVISED PLANTING AREAS
- 4 REVISED TABLES
- 5 ADDED NOTES WHERE NO CREDIT IS GENERATED
- 6 ADDED DWR NUMBER

LEGEND:

STREAM ASBUILT TOB - TOB

- ORIGIN POINT ON CVS PLOTS
- CVS PLOTS MEETING SUCCESS CRITERIA MY0
- WETLAND RESTORATION
- WETLAND ENHANCEMENT
- MARSH TREATMENT AREA

CONSERVATION EASEMENT LINE

RIPARIAN BUFFER MITIGATION TYPE

	TOB - 100 FT. RESTORATION (1:1) - 213,290 SQ. FT.
\sim	101 FT 200 FT. RESTORATION (1:1 BUT 33% CREDIT PER RULE) - 40,976 SQ. FT.
	TOB - 100 FT. ENHANCEMENT (2:1 CATTLE EX. PER RULE) - 341,433 SQ. FT.
	TOB - 100 FT. PRESERVATION (NON-SUBJECT STREAM 5:1) - 25,614 SQ. FT.
	101 FT 200 FT. PRESERVATION (NON-SUBJECT STREAM 5:1 AND 33% CREDIT PER RULE) - 2,814 SQ. FT
	NON CREDIT GENERATING (LESS THAN 20 FT.)
_	DISTANCES FROM TOB

- 101 FT. 200 FT. RESTORATION (1:1 BUT 33% CREDIT PER RULE) 40,976 SQ. FT.
- TOB 100 FT. ENHANCEMENT (2:1 CATTLE EX. PER RULE) 341,433 SQ. FT.
- TOB 100 FT. PRESERVATION (NON-SUBJECT STREAM 5:1) 25,614 SQ. FT.
- 101 FT. 200 FT. PRESERVATION (NON-SUBJECT STREAM 5:1 AND 33% CREDIT PER RULE) 2,814 SQ. FT.

ND
CEMENT II
RESTORATION
68 (UT-2)

_UT-2 END RESTORATION STA 2+07 (UT-2) STA 12+08 (UT-1)

	AS-BUILT CREDIT AREA PLAN SHEET 2 OF 6						
0	50	100	200				
1"	- 100'						

PLANTING SCHEDULE

ALL PLANTS WERE PLANTED BY 12/31/18

Planted Bare Root Woody Vegetation **Major Hill Restoration Site**

Species	Piedmont/Low Mountain Alluvial Forest	Dry-Mesic Oak/Hickory Forest	Marsh Treatment Wetland	Streamside Assemblage	Total	
Alnus serrulata			5	20	25	
Asimina triloba				200	200	
Betula nigra	100			200	300	
Carpinus caroliniana		600			600	
Cephalanthus occidentalis			5	20	25	
Cercis canadensis		500			500	
Cornus amomum	95		5	800	900	
Diospyros virginiana		450			450	
Fraxinus americana		100			100	
Fraxinus pennsylvanica	150			750	900	
Liriodendron tulipifera	75				75	
Nyssa sylvatia		600			600	
Platanus occidentalis	120			780	900	
Quercus nigra	110	790		500	1,400	
Quercus phellos	100	700		400	1,200	
Salix nigra*				400*	400	
Sambucus canadensis			11	14	25	
TOTALS	750	3,740	26	4,084	8,600	

*Live stakes of Salix nigra were planted; all other planted species were planted as bare root plants.

(PLANTING SCHEDULE PROVIDED BY AXIOM ENVIRONMENTAL)

Appendix I Credit Discrepancy Letter

Appendices Restoration Systems, LLC March 2019

Axiom Environmental, Inc.

218 Snow Avenue, Raleigh, North Carolina 27603 919-215-1693

March 5, 2019

Mr. Worth Creech Restoration Systems, L.L.C. 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604

RE: Major Hill Stream and Wetland Restoration Site - Asbuilt Discrepancies 17-009

Dear Worth:

During preparation of the As-built Construction Plans and Baseline Document for the Major Hill Stream and Wetland Restoration Site it became apparent that a stationing discrepancy occurred during detailed planning. Stationing discrepancies are listed in the following table and are depicted on the following page.

	Detailed	Construction	As-built	
UT	Plan	Plan	Plan	
Numbe r	End Station	End Station	End Station	
UT 1	27+59	27+96	27+96	
UT 2	02+11	02+07	02+07	
UT 3	21+97	22+98	22+98	

Please note, Construction Plan and As-built stationing are consistent. The discrepancy between the Detailed Restoration Plan and Construction Plans are not certain, but likely result from easement boundary changes between Detailed Plan figure development and Construction Plan preparation, GIS conversion errors, and/or typographical error. These problems are being resolve for future submissions.

The final Asbuilt stationing matches the Construction Plans and depict what was constructed/enhanced at the Site.

The original SMU total calculated for the Detailed Restoration Plan was 3006 SMUs. The Asbuilt SMU total calculated for the Asbuilt Construction Plans and Baseline document is 3058 SMUs.

Detailed Plan - Figure 6 (Restoration Plan) Stationing

Construction Plan - Sheet 1 Stationing

Based on information provided above we request a credit alteration at the Site. The credit alteration results from stationing discrepancies from the Detailed Restoration Plan and Construction Plans. The alteration is in the amount of 52 SMUs and represents what was constructed/enhanced at the Site.

Yours truly, Axiom Environmental, Inc.

W Grant Leub

W. Grant Lewis President

Major Hill-Asbuilt Discrepancies March 5, 2019 Page 3 of 3

ADDENDUM TO MITIGATION PLAN Table 1. Project Components and Mitigation Credits Major Hill Restoration Site

Reach ID	Stream Stationing/ Wetland Type	Existing Footage/ Acreage	Mitigation Plan Footage/ Acreage	Constructed Footage/ Acreage	Restoration Level	Restoration or Restoration Equivalent	Mitigation Ratio	Mitigation Credits	Comment
UT 1	00+00 to 16+99	1829	1699	1699	Restoration	1699	1:1	1699	
UT 1	16+99 to 27+96	1097	1060	1097*	EII	1097	2.5:1	439	
UT 2	00+00 to 01+68	168	168	168	EII	168	2.5:1	67	
UT 2	01+68 to 02+07	39	43	39*	Restoration	39	1:1	39	
UT 3	00+00 to 22+98	2298	2197	2298*	ЕП	2298-80-144- 40= 2034	2.5:1	814	80 If and 40 If of UT3 are not credit generating due to crossings and drainage easement. 144 If are not credit generating due to lack of control of south bank and drainage easement.
Wetlands	Riparian Riverine		0.54	0.54	Restoration	0.54	1:1	0.54	Wetland Restoration
Wetlands	Riparian Riverine	0.52	0.44	0.44	Enhancement	0.44	2:1	0.22	Wetland Enhancement

Overall Assets Summary: Amended Mitigation Plan

Stream3058 SMURiparian Riverine Wetland : 0.760 WMU

*UT1, UT2, and UT3 discrepancies between Mitigation Plan and As-built tables are the result of errors between detailed plan stationing and surveyed construction plan stationing. They are specifically attributed to typographical error, GIS to CAD conversion error, and easement boundary changes between detailed plan development and construction plans. Construction Plan information is consistent from Mitigation Plan to As-Built, and the As-Built table reflects Construction Plan measurement accuratly.

Project No. 100015 Major Hill Stream and Wetland Restoration Site Alamance County, North Carolina

Restoration Systems, LLC March 2019